似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。

我的问题有两个方面:

用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?


当前回答

移动平均线 迭代器方法 在i处反转数组,简单地求i到n的均值。 使用列表推导式在运行中生成迷你数组。

x = np.random.randint(10, size=20)

def moving_average(arr, n):
    return [ (arr[:i+1][::-1][:n]).mean() for i, ele in enumerate(arr) ]
d = 5

moving_average(x, d)

张量卷积

moving_average = np.convolve(x, np.ones(d)/d, mode='valid')

其他回答

如果你已经有一个已知大小的数组

import numpy as np                                         
M=np.arange(12)
                                                               
avg=[]                                                         
i=0
while i<len(M)-2: #for n point average len(M) - (n-1)
        avg.append((M[i]+M[i+1]+M[i+2])/3) #n is denominator                       
        i+=1     
                                                                                                    
print(avg)
for i in range(len(Data)):
    Data[i, 1] = Data[i-lookback:i, 0].sum() / lookback

试试这段代码。我认为这样更简单,也能达到目的。 回望是移动平均线的窗口。

在Data[i-lookback:i, 0].sum()中,我放了0来指代数据集的第一列,但如果你有多个列,你可以放任何你喜欢的列。

所有的答案似乎都集中在预先计算的列表的情况下。对于实际运行的用例,数字一个接一个地进来,这里有一个简单的类,它提供了对最后N个值求平均的服务:

import numpy as np
class RunningAverage():
    def __init__(self, stack_size):
        self.stack = [0 for _ in range(stack_size)]
        self.ptr = 0
        self.full_cycle = False
    def add(self,value):
        self.stack[self.ptr] = value
        self.ptr += 1
        if self.ptr == len(self.stack):
            self.full_cycle = True
            self.ptr = 0
    def get_avg(self):
        if self.full_cycle:
            return np.mean(self.stack)
        else:
            return np.mean(self.stack[:self.ptr])

用法:

N = 50  # size of the averaging window
run_avg = RunningAverage(N)
for i in range(1000):
    value = <my computation>
    run_avg.add(value)
    if i % 20 ==0: # print once in 20 iters:
        print(f'the average value is {run_avg.get_avg()}')

下面是一个使用numba的快速实现(注意类型)。注意它确实包含移位的nan。

import numpy as np
import numba as nb

@nb.jit(nb.float64[:](nb.float64[:],nb.int64),
        fastmath=True,nopython=True)
def moving_average( array, window ):    
    ret = np.cumsum(array)
    ret[window:] = ret[window:] - ret[:-window]
    ma = ret[window - 1:] / window
    n = np.empty(window-1); n.fill(np.nan)
    return np.concatenate((n.ravel(), ma.ravel())) 

如果有人需要一个简单的解决方案,这里有一个

def moving_average(a,n):
    N=len(a)
    return np.array([np.mean(a[i:i+n]) for i in np.arange(0,N-n+1)])

你可以通过在np.arange(0,N-n+1,step)中添加step参数来改变窗口之间的重叠