似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。
我的问题有两个方面:
用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?
似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。
我的问题有两个方面:
用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?
当前回答
如果有人需要一个简单的解决方案,这里有一个
def moving_average(a,n):
N=len(a)
return np.array([np.mean(a[i:i+n]) for i in np.arange(0,N-n+1)])
你可以通过在np.arange(0,N-n+1,step)中添加step参数来改变窗口之间的重叠
其他回答
如果有人需要一个简单的解决方案,这里有一个
def moving_average(a,n):
N=len(a)
return np.array([np.mean(a[i:i+n]) for i in np.arange(0,N-n+1)])
你可以通过在np.arange(0,N-n+1,step)中添加step参数来改变窗口之间的重叠
这个使用Pandas的答案是从上面改编的,因为rolling_mean不再是Pandas的一部分了
# the recommended syntax to import pandas
import pandas as pd
import numpy as np
# prepare some fake data:
# the date-time indices:
t = pd.date_range('1/1/2010', '12/31/2012', freq='D')
# the data:
x = np.arange(0, t.shape[0])
# combine the data & index into a Pandas 'Series' object
D = pd.Series(x, t)
现在,只需要在窗口大小的数据框架上调用滚动函数,在下面的例子中,窗口大小是10天。
d_mva10 = D.rolling(10).mean()
# d_mva is the same size as the original Series
# though obviously the first w values are NaN where w is the window size
d_mva10[:11]
2010-01-01 NaN
2010-01-02 NaN
2010-01-03 NaN
2010-01-04 NaN
2010-01-05 NaN
2010-01-06 NaN
2010-01-07 NaN
2010-01-08 NaN
2010-01-09 NaN
2010-01-10 4.5
2010-01-11 5.5
Freq: D, dtype: float64
通过比较下面的解决方案与使用cumsum of numpy的解决方案,这个解决方案几乎花费了一半的时间。这是因为它不需要遍历整个数组来做cumsum,然后做所有的减法。此外,如果数组很大且数量很大(可能溢出),cumsum可能是“危险的”。当然,这里也存在危险,但至少我们只把重要的数字加在一起。
def moving_average(array_numbers, n):
if n > len(array_numbers):
return []
temp_sum = sum(array_numbers[:n])
averages = [temp_sum / float(n)]
for first_index, item in enumerate(array_numbers[n:]):
temp_sum += item - array_numbers[first_index]
averages.append(temp_sum / float(n))
return averages
如果你已经有一个已知大小的数组
import numpy as np
M=np.arange(12)
avg=[]
i=0
while i<len(M)-2: #for n point average len(M) - (n-1)
avg.append((M[i]+M[i+1]+M[i+2])/3) #n is denominator
i+=1
print(avg)
实现这一点的一个简单方法是使用np.卷积。 这背后的思想是利用离散卷积的计算方式,并使用它来返回滚动平均值。这可以通过与np序列进行卷积来实现。长度等于我们想要的滑动窗口长度。
为了做到这一点,我们可以定义以下函数:
def moving_average(x, w):
return np.convolve(x, np.ones(w), 'valid') / w
该函数将对序列x和长度为w的序列进行卷积。注意,所选模式是有效的,因此卷积积只对序列完全重叠的点给出。
一些例子:
x = np.array([5,3,8,10,2,1,5,1,0,2])
对于窗口长度为2的移动平均线,我们有:
moving_average(x, 2)
# array([4. , 5.5, 9. , 6. , 1.5, 3. , 3. , 0.5, 1. ])
对于长度为4的窗口:
moving_average(x, 4)
# array([6.5 , 5.75, 5.25, 4.5 , 2.25, 1.75, 2. ])
卷积是怎么工作的?
让我们更深入地看看离散卷积是如何计算的。 下面的函数旨在复制np。卷积计算输出值:
def mov_avg(x, w):
for m in range(len(x)-(w-1)):
yield sum(np.ones(w) * x[m:m+w]) / w
对于上面的同一个例子,也会得到:
list(mov_avg(x, 2))
# [4.0, 5.5, 9.0, 6.0, 1.5, 3.0, 3.0, 0.5, 1.0]
所以每一步要做的就是求1数组和当前窗口之间的内积。在这种情况下,乘以np.ones(w)是多余的,因为我们直接取序列的和。
下面是一个计算第一个输出的例子,这样会更清楚一些。假设我们想要一个w=4的窗口:
[1,1,1,1]
[5,3,8,10,2,1,5,1,0,2]
= (1*5 + 1*3 + 1*8 + 1*10) / w = 6.5
下面的输出将被计算为:
[1,1,1,1]
[5,3,8,10,2,1,5,1,0,2]
= (1*3 + 1*8 + 1*10 + 1*2) / w = 5.75
依此类推,在所有重叠完成后返回序列的移动平均值。