似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。
我的问题有两个方面:
用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?
似乎没有函数可以简单地计算numpy/scipy的移动平均值,这导致了复杂的解决方案。
我的问题有两个方面:
用numpy(正确地)实现移动平均的最简单方法是什么? 既然这似乎不是小事,而且容易出错,有没有一个很好的理由不包括电池在这种情况下?
当前回答
如果你已经有一个已知大小的数组
import numpy as np
M=np.arange(12)
avg=[]
i=0
while i<len(M)-2: #for n point average len(M) - (n-1)
avg.append((M[i]+M[i+1]+M[i+2])/3) #n is denominator
i+=1
print(avg)
其他回答
这里有许多实现这一点的方法,以及一些基准测试。最好的方法是使用来自其他库的优化代码。瓶颈。Move_mean方法可能是最好的方法。scipy。卷积方法也非常快,可扩展,并且语法和概念简单,但是对于非常大的窗口值不能很好地扩展。numpy。如果你需要一个纯numpy方法,Cumsum方法是很好的。
注意:其中一些(例如:瓶颈。move_mean)不是居中的,并且会转移你的数据。
import numpy as np
import scipy as sci
import scipy.signal as sig
import pandas as pd
import bottleneck as bn
import time as time
def rollavg_direct(a,n):
'Direct "for" loop'
assert n%2==1
b = a*0.0
for i in range(len(a)) :
b[i]=a[max(i-n//2,0):min(i+n//2+1,len(a))].mean()
return b
def rollavg_comprehension(a,n):
'List comprehension'
assert n%2==1
r,N = int(n/2),len(a)
return np.array([a[max(i-r,0):min(i+r+1,N)].mean() for i in range(N)])
def rollavg_convolve(a,n):
'scipy.convolve'
assert n%2==1
return sci.convolve(a,np.ones(n,dtype='float')/n, 'same')[n//2:-n//2+1]
def rollavg_convolve_edges(a,n):
'scipy.convolve, edge handling'
assert n%2==1
return sci.convolve(a,np.ones(n,dtype='float'), 'same')/sci.convolve(np.ones(len(a)),np.ones(n), 'same')
def rollavg_cumsum(a,n):
'numpy.cumsum'
assert n%2==1
cumsum_vec = np.cumsum(np.insert(a, 0, 0))
return (cumsum_vec[n:] - cumsum_vec[:-n]) / n
def rollavg_cumsum_edges(a,n):
'numpy.cumsum, edge handling'
assert n%2==1
N = len(a)
cumsum_vec = np.cumsum(np.insert(np.pad(a,(n-1,n-1),'constant'), 0, 0))
d = np.hstack((np.arange(n//2+1,n),np.ones(N-n)*n,np.arange(n,n//2,-1)))
return (cumsum_vec[n+n//2:-n//2+1] - cumsum_vec[n//2:-n-n//2]) / d
def rollavg_roll(a,n):
'Numpy array rolling'
assert n%2==1
N = len(a)
rolling_idx = np.mod((N-1)*np.arange(n)[:,None] + np.arange(N), N)
return a[rolling_idx].mean(axis=0)[n-1:]
def rollavg_roll_edges(a,n):
# see https://stackoverflow.com/questions/42101082/fast-numpy-roll
'Numpy array rolling, edge handling'
assert n%2==1
a = np.pad(a,(0,n-1-n//2), 'constant')*np.ones(n)[:,None]
m = a.shape[1]
idx = np.mod((m-1)*np.arange(n)[:,None] + np.arange(m), m) # Rolling index
out = a[np.arange(-n//2,n//2)[:,None], idx]
d = np.hstack((np.arange(1,n),np.ones(m-2*n+1+n//2)*n,np.arange(n,n//2,-1)))
return (out.sum(axis=0)/d)[n//2:]
def rollavg_pandas(a,n):
'Pandas rolling average'
return pd.DataFrame(a).rolling(n, center=True, min_periods=1).mean().to_numpy()
def rollavg_bottlneck(a,n):
'bottleneck.move_mean'
return bn.move_mean(a, window=n, min_count=1)
N = 10**6
a = np.random.rand(N)
functions = [rollavg_direct, rollavg_comprehension, rollavg_convolve,
rollavg_convolve_edges, rollavg_cumsum, rollavg_cumsum_edges,
rollavg_pandas, rollavg_bottlneck, rollavg_roll, rollavg_roll_edges]
print('Small window (n=3)')
%load_ext memory_profiler
for f in functions :
print('\n'+f.__doc__+ ' : ')
%timeit b=f(a,3)
print('\nLarge window (n=1001)')
for f in functions[0:-2] :
print('\n'+f.__doc__+ ' : ')
%timeit b=f(a,1001)
print('\nMemory\n')
print('Small window (n=3)')
N = 10**7
a = np.random.rand(N)
%load_ext memory_profiler
for f in functions[2:] :
print('\n'+f.__doc__+ ' : ')
%memit b=f(a,3)
print('\nLarge window (n=1001)')
for f in functions[2:-2] :
print('\n'+f.__doc__+ ' : ')
%memit b=f(a,1001)
定时,小窗口(n=3)
Direct "for" loop :
4.14 s ± 23.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
List comprehension :
3.96 s ± 27.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
scipy.convolve :
1.07 ms ± 26.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
scipy.convolve, edge handling :
4.68 ms ± 9.69 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
numpy.cumsum :
5.31 ms ± 5.11 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
numpy.cumsum, edge handling :
8.52 ms ± 11.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Pandas rolling average :
9.85 ms ± 9.63 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
bottleneck.move_mean :
1.3 ms ± 12.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Numpy array rolling :
31.3 ms ± 91.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
Numpy array rolling, edge handling :
61.1 ms ± 55.9 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
定时,大窗口(n=1001)
Direct "for" loop :
4.67 s ± 34 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
List comprehension :
4.46 s ± 14.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
scipy.convolve :
103 ms ± 165 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
scipy.convolve, edge handling :
272 ms ± 1.23 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
numpy.cumsum :
5.19 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
numpy.cumsum, edge handling :
8.7 ms ± 11.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Pandas rolling average :
9.67 ms ± 199 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
bottleneck.move_mean :
1.31 ms ± 15.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
内存,小窗口(n=3)
The memory_profiler extension is already loaded. To reload it, use:
%reload_ext memory_profiler
scipy.convolve :
peak memory: 362.66 MiB, increment: 73.61 MiB
scipy.convolve, edge handling :
peak memory: 510.24 MiB, increment: 221.19 MiB
numpy.cumsum :
peak memory: 441.81 MiB, increment: 152.76 MiB
numpy.cumsum, edge handling :
peak memory: 518.14 MiB, increment: 228.84 MiB
Pandas rolling average :
peak memory: 449.34 MiB, increment: 160.02 MiB
bottleneck.move_mean :
peak memory: 374.17 MiB, increment: 75.54 MiB
Numpy array rolling :
peak memory: 661.29 MiB, increment: 362.65 MiB
Numpy array rolling, edge handling :
peak memory: 1111.25 MiB, increment: 812.61 MiB
内存,大窗口(n=1001)
scipy.convolve :
peak memory: 370.62 MiB, increment: 71.83 MiB
scipy.convolve, edge handling :
peak memory: 521.98 MiB, increment: 223.18 MiB
numpy.cumsum :
peak memory: 451.32 MiB, increment: 152.52 MiB
numpy.cumsum, edge handling :
peak memory: 527.51 MiB, increment: 228.71 MiB
Pandas rolling average :
peak memory: 451.25 MiB, increment: 152.50 MiB
bottleneck.move_mean :
peak memory: 374.64 MiB, increment: 75.85 MiB
如果你想仔细考虑边缘条件(只从边缘的可用元素计算平均值),下面的函数可以解决这个问题。
import numpy as np
def running_mean(x, N):
out = np.zeros_like(x, dtype=np.float64)
dim_len = x.shape[0]
for i in range(dim_len):
if N%2 == 0:
a, b = i - (N-1)//2, i + (N-1)//2 + 2
else:
a, b = i - (N-1)//2, i + (N-1)//2 + 1
#cap indices to min and max indices
a = max(0, a)
b = min(dim_len, b)
out[i] = np.mean(x[a:b])
return out
>>> running_mean(np.array([1,2,3,4]), 2)
array([1.5, 2.5, 3.5, 4. ])
>>> running_mean(np.array([1,2,3,4]), 3)
array([1.5, 2. , 3. , 3.5])
您也可以编写自己的Python C扩展。
这当然不是最简单的方法,但与使用np相比,这将使您运行得更快,内存效率更高。堆积:作为建筑块的堆积
// moving_average.c
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <Python.h>
#include <numpy/arrayobject.h>
static PyObject *moving_average(PyObject *self, PyObject *args) {
PyObject *input;
int64_t window_size;
PyArg_ParseTuple(args, "Ol", &input, &window_size);
if (PyErr_Occurred()) return NULL;
if (!PyArray_Check(input) || !PyArray_ISNUMBER((PyArrayObject *)input)) {
PyErr_SetString(PyExc_TypeError, "First argument must be a numpy array with numeric dtype");
return NULL;
}
int64_t input_size = PyObject_Size(input);
double *input_data;
if (PyArray_AsCArray(&input, &input_data, (npy_intp[]){ [0] = input_size }, 1, PyArray_DescrFromType(NPY_DOUBLE)) != 0) {
PyErr_SetString(PyExc_TypeError, "Failed to simulate C array of type double");
return NULL;
}
int64_t output_size = input_size - window_size + 1;
PyObject *output = PyArray_SimpleNew(1, (npy_intp[]){ [0] = output_size }, NPY_DOUBLE);
double *output_data = PyArray_DATA((PyArrayObject *)output);
double cumsum_before = 0;
double cumsum_after = 0;
for (int i = 0; i < window_size; ++i) {
cumsum_after += input_data[i];
}
for (int i = 0; i < output_size - 1; ++i) {
output_data[i] = (cumsum_after - cumsum_before) / window_size;
cumsum_after += input_data[i + window_size];
cumsum_before += input_data[i];
}
output_data[output_size - 1] = (cumsum_after - cumsum_before) / window_size;
return output;
}
static PyMethodDef methods[] = {
{
"moving_average",
moving_average,
METH_VARARGS,
"Rolling mean of numpy array with specified window size"
},
{NULL, NULL, 0, NULL}
};
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"moving_average",
"C extension for finding the rolling mean of a numpy array",
-1,
methods
};
PyMODINIT_FUNC PyInit_moving_average(void) {
PyObject *module = PyModule_Create(&moduledef);
import_array();
return module;
}
METH_VARARGS specifies that the method only takes positional arguments. PyArg_ParseTuple allows you to parse these positional arguments. By using PyErr_SetString and returning NULL from the method, you can signal that an exception has occurred to the Python interpreter from the C extension. PyArray_AsCArray allows your method to be polymorphic when it comes to input array dtype, alignment, whether the array is C-contiguous (See "Can a numpy 1d array not be contiguous?") etc. without needing to create a copy of the array. If you instead used PyArray_DATA, you'd need to deal with this yourself. PyArray_SimpleNew allows you to create a new numpy array. This is similar to using np.empty. The array will not be initialized, and might contain non-deterministic junk which could surprise you if you forget to overwrite it.
构建C扩展
# setup.py
from setuptools import setup, Extension
import numpy
setup(
ext_modules=[
Extension(
'moving_average',
['moving_average.c'],
include_dirs=[numpy.get_include()]
)
]
)
# python setup.py build_ext --build-lib=.
基准
import numpy as np
# Our compiled C extension:
from moving_average import moving_average as moving_average_c
# Answer by Jaime using npcumsum
def moving_average_cumsum(a, n) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
# Answer by yatu using np.convolve
def moving_average_convolve(a, n):
return np.convolve(a, np.ones(n), 'valid') / n
a = np.random.rand(1_000_000)
print('window_size = 3')
%timeit moving_average_c(a, 3)
%timeit moving_average_cumsum(a, 3)
%timeit moving_average_convolve(a, 3)
print('\nwindow_size = 100')
%timeit moving_average_c(a, 100)
%timeit moving_average_cumsum(a, 100)
%timeit moving_average_convolve(a, 100)
window_size = 3
958 µs ± 4.68 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
4.52 ms ± 15.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
809 µs ± 463 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
window_size = 100
977 µs ± 937 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
6.16 ms ± 19.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
14.2 ms ± 12.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
从Numpy 1.20开始,sliding_window_view提供了一种在元素窗口中滑动/滚动的方法。然后你可以分别取平均值。
例如,对于一个4元素的窗口:
from numpy.lib.stride_tricks import sliding_window_view
# values = np.array([5, 3, 8, 10, 2, 1, 5, 1, 0, 2])
np.average(sliding_window_view(values, window_shape = 4), axis=1)
# array([6.5, 5.75, 5.25, 4.5, 2.25, 1.75, 2])
注意sliding_window_view的中间结果:
# values = np.array([5, 3, 8, 10, 2, 1, 5, 1, 0, 2])
sliding_window_view(values, window_shape = 4)
# array([[ 5, 3, 8, 10],
# [ 3, 8, 10, 2],
# [ 8, 10, 2, 1],
# [10, 2, 1, 5],
# [ 2, 1, 5, 1],
# [ 1, 5, 1, 0],
# [ 5, 1, 0, 2]])
NumPy缺乏特定领域的函数可能是由于核心团队的纪律和对NumPy主要指令的忠实:提供n维数组类型,以及用于创建和索引这些数组的函数。像许多基本目标一样,这个目标并不小,NumPy出色地完成了它。
更大的SciPy包含更大的特定于领域的库集合(被SciPy开发人员称为子包)——例如,数值优化(optimize)、信号处理(signal)和积分(integrate)。
我的猜测是,您要查找的函数至少在SciPy子包中的一个(SciPy。也许信号);然而,我将首先在SciPy scikit集合中查找,确定相关的scikit并在其中寻找感兴趣的函数。
Scikits是基于NumPy/SciPy独立开发的包,并针对特定的技术规程(例如,Scikits -image, Scikits -learn等),其中几个(特别是用于数值优化的令人钦佩的OpenOpt)在选择位于相对较新的Scikits主题之下很久以前就得到了高度重视,成熟的项目。Scikits主页上列出了大约30个这样的Scikits,尽管其中至少有几个已经不再处于积极的开发中。
按照这个建议,你会发现scikits-timeseries;但是,该软件包已不再处于积极开发阶段;实际上,Pandas已经成为AFAIK,事实上的基于numpy的时间序列库。
Pandas有几个函数可以用来计算移动平均线;其中最简单的可能是rolling_mean,你可以这样使用:
>>> # the recommended syntax to import pandas
>>> import pandas as PD
>>> import numpy as NP
>>> # prepare some fake data:
>>> # the date-time indices:
>>> t = PD.date_range('1/1/2010', '12/31/2012', freq='D')
>>> # the data:
>>> x = NP.arange(0, t.shape[0])
>>> # combine the data & index into a Pandas 'Series' object
>>> D = PD.Series(x, t)
现在,只需调用函数rolling_mean,传入Series对象和窗口大小,在下面的例子中是10天。
>>> d_mva = PD.rolling_mean(D, 10)
>>> # d_mva is the same size as the original Series
>>> d_mva.shape
(1096,)
>>> # though obviously the first w values are NaN where w is the window size
>>> d_mva[:3]
2010-01-01 NaN
2010-01-02 NaN
2010-01-03 NaN
验证它是否有效。,将原系列中的值10 - 15与用滚动平均值平滑的新系列进行比较
>>> D[10:15]
2010-01-11 2.041076
2010-01-12 2.041076
2010-01-13 2.720585
2010-01-14 2.720585
2010-01-15 3.656987
Freq: D
>>> d_mva[10:20]
2010-01-11 3.131125
2010-01-12 3.035232
2010-01-13 2.923144
2010-01-14 2.811055
2010-01-15 2.785824
Freq: D
The function rolling_mean, along with about a dozen or so other function are informally grouped in the Pandas documentation under the rubric moving window functions; a second, related group of functions in Pandas is referred to as exponentially-weighted functions (e.g., ewma, which calculates exponentially moving weighted average). The fact that this second group is not included in the first (moving window functions) is perhaps because the exponentially-weighted transforms don't rely on a fixed-length window