我有一个熊猫数据框架如下:

      itm Date                  Amount 
67    420 2012-09-30 00:00:00   65211
68    421 2012-09-09 00:00:00   29424
69    421 2012-09-16 00:00:00   29877
70    421 2012-09-23 00:00:00   30990
71    421 2012-09-30 00:00:00   61303
72    485 2012-09-09 00:00:00   71781
73    485 2012-09-16 00:00:00     NaN
74    485 2012-09-23 00:00:00   11072
75    485 2012-09-30 00:00:00  113702
76    489 2012-09-09 00:00:00   64731
77    489 2012-09-16 00:00:00     NaN

当我尝试应用一个函数到金额列,我得到以下错误:

ValueError: cannot convert float NaN to integer

我尝试使用数学模块中的.isnan应用一个函数 我已经尝试了pandas .replace属性 我尝试了pandas 0.9中的.sparse data属性 我还尝试了在函数中if NaN == NaN语句。 我也看了这篇文章我如何替换NA值与零在一个R数据框架?同时看一些其他的文章。 我尝试过的所有方法都不起作用或不能识别NaN。 任何提示或解决方案将不胜感激。


当前回答

你可以使用replace将NaN更改为0:

import pandas as pd
import numpy as np

# for column
df['column'] = df['column'].replace(np.nan, 0)

# for whole dataframe
df = df.replace(np.nan, 0)

# inplace
df.replace(np.nan, 0, inplace=True)

其他回答

用不同的方法替换不同列中的nan:

   replacement= {'column_A': 0, 'column_B': -999, 'column_C': -99999}
   df.fillna(value=replacement)

我相信DataFrame.fillna()将为您完成此工作。

链接到文档的数据框架和系列。

例子:

In [7]: df
Out[7]: 
          0         1
0       NaN       NaN
1 -0.494375  0.570994
2       NaN       NaN
3  1.876360 -0.229738
4       NaN       NaN

In [8]: df.fillna(0)
Out[8]: 
          0         1
0  0.000000  0.000000
1 -0.494375  0.570994
2  0.000000  0.000000
3  1.876360 -0.229738
4  0.000000  0.000000

若要仅在一列中填充nan,请仅选择该列。在这种情况下,我使用inplace=True来实际改变df的内容。

In [12]: df[1].fillna(0, inplace=True)
Out[12]: 
0    0.000000
1    0.570994
2    0.000000
3   -0.229738
4    0.000000
Name: 1

In [13]: df
Out[13]: 
          0         1
0       NaN  0.000000
1 -0.494375  0.570994
2       NaN  0.000000
3  1.876360 -0.229738
4       NaN  0.000000

编辑:

为了避免SettingWithCopyWarning,使用内置的列特定功能:

df.fillna({1:0}, inplace=True)

填补缺失值的简单方法:-

填充字符串列:当字符串列有缺失值和NaN值时。

df['string column name'].fillna(df['string column name'].mode().values[0], inplace = True)

填充数字列:当数字列有缺失值和NaN值时。

df['numeric column name'].fillna(df['numeric column name'].mean(), inplace = True)

用零填充NaN:

df['column name'].fillna(0, inplace = True)

并不保证切片返回一个视图或副本。你可以这样做

df['column'] = df['column'].fillna(value)

将所有nan替换为0

df = df.fillna(0)