我有一个熊猫数据框架如下:

      itm Date                  Amount 
67    420 2012-09-30 00:00:00   65211
68    421 2012-09-09 00:00:00   29424
69    421 2012-09-16 00:00:00   29877
70    421 2012-09-23 00:00:00   30990
71    421 2012-09-30 00:00:00   61303
72    485 2012-09-09 00:00:00   71781
73    485 2012-09-16 00:00:00     NaN
74    485 2012-09-23 00:00:00   11072
75    485 2012-09-30 00:00:00  113702
76    489 2012-09-09 00:00:00   64731
77    489 2012-09-16 00:00:00     NaN

当我尝试应用一个函数到金额列,我得到以下错误:

ValueError: cannot convert float NaN to integer

我尝试使用数学模块中的.isnan应用一个函数 我已经尝试了pandas .replace属性 我尝试了pandas 0.9中的.sparse data属性 我还尝试了在函数中if NaN == NaN语句。 我也看了这篇文章我如何替换NA值与零在一个R数据框架?同时看一些其他的文章。 我尝试过的所有方法都不起作用或不能识别NaN。 任何提示或解决方案将不胜感激。


当前回答

如果要将其转换为pandas数据框架,也可以使用fillna来完成。

import numpy as np
df=np.array([[1,2,3, np.nan]])

import pandas as pd
df=pd.DataFrame(df)
df.fillna(0)

这将返回以下内容:

     0    1    2   3
0  1.0  2.0  3.0 NaN
>>> df.fillna(0)
     0    1    2    3
0  1.0  2.0  3.0  0.0

其他回答

你可以使用replace将NaN更改为0:

import pandas as pd
import numpy as np

# for column
df['column'] = df['column'].replace(np.nan, 0)

# for whole dataframe
df = df.replace(np.nan, 0)

# inplace
df.replace(np.nan, 0, inplace=True)

并不保证切片返回一个视图或副本。你可以这样做

df['column'] = df['column'].fillna(value)

填补缺失值的简单方法:-

填充字符串列:当字符串列有缺失值和NaN值时。

df['string column name'].fillna(df['string column name'].mode().values[0], inplace = True)

填充数字列:当数字列有缺失值和NaN值时。

df['numeric column name'].fillna(df['numeric column name'].mean(), inplace = True)

用零填充NaN:

df['column name'].fillna(0, inplace = True)

将所有nan替换为0

df = df.fillna(0)

考虑到上表中的特定列Amount是整数类型。以下是一个解决方案:

df['Amount'] = df.Amount.fillna(0).astype(int)

类似地,你可以用各种数据类型来填充它,比如float, str等等。

特别地,我会考虑datatype来比较同一列的不同值。