我有一个熊猫数据框架如下:

      itm Date                  Amount 
67    420 2012-09-30 00:00:00   65211
68    421 2012-09-09 00:00:00   29424
69    421 2012-09-16 00:00:00   29877
70    421 2012-09-23 00:00:00   30990
71    421 2012-09-30 00:00:00   61303
72    485 2012-09-09 00:00:00   71781
73    485 2012-09-16 00:00:00     NaN
74    485 2012-09-23 00:00:00   11072
75    485 2012-09-30 00:00:00  113702
76    489 2012-09-09 00:00:00   64731
77    489 2012-09-16 00:00:00     NaN

当我尝试应用一个函数到金额列,我得到以下错误:

ValueError: cannot convert float NaN to integer

我尝试使用数学模块中的.isnan应用一个函数 我已经尝试了pandas .replace属性 我尝试了pandas 0.9中的.sparse data属性 我还尝试了在函数中if NaN == NaN语句。 我也看了这篇文章我如何替换NA值与零在一个R数据框架?同时看一些其他的文章。 我尝试过的所有方法都不起作用或不能识别NaN。 任何提示或解决方案将不胜感激。


当前回答

替换熊猫中的na值

df['column_name'].fillna(value_to_be_replaced,inplace=True)

如果inplace = False,它不会更新df (dataframe),而是返回修改后的值。

其他回答

我只是想提供一点更新/特殊情况,因为看起来人们仍然来这里。如果您正在使用多索引或其他索引切片器,inplace=True选项可能不足以更新您所选择的切片。例如,在2x2级别的多索引中,这不会改变任何值(例如pandas 0.15):

idx = pd.IndexSlice
df.loc[idx[:,mask_1],idx[mask_2,:]].fillna(value=0,inplace=True)

“问题”是链接破坏了fillna更新原始数据框架的能力。我把“问题”加上引号,是因为在某些情况下,设计决策导致不通过这些链进行解释是有充分理由的。此外,这是一个复杂的示例(尽管我真的遇到了它),但同样的情况可能适用于更少的索引级别,这取决于您如何进行切片。

解决方案是DataFrame.update:

df.update(df.loc[idx[:,mask_1],idx[[mask_2],:]].fillna(value=0))

它是一行,读起来相当好(某种程度上),并消除了任何不必要的中间变量或循环混乱,同时允许您将fillna应用到您喜欢的任何多级切片!

如果有人能找到这个不工作的地方,请在评论中发帖,我一直在搞砸它,看看源代码,它似乎至少解决了我的多索引切片问题。

这对我有用,但没人提过。会有什么问题吗?

df.loc[df['column_name'].isnull(), 'column_name'] = 0

如果要将其转换为pandas数据框架,也可以使用fillna来完成。

import numpy as np
df=np.array([[1,2,3, np.nan]])

import pandas as pd
df=pd.DataFrame(df)
df.fillna(0)

这将返回以下内容:

     0    1    2   3
0  1.0  2.0  3.0 NaN
>>> df.fillna(0)
     0    1    2    3
0  1.0  2.0  3.0  0.0

我相信DataFrame.fillna()将为您完成此工作。

链接到文档的数据框架和系列。

例子:

In [7]: df
Out[7]: 
          0         1
0       NaN       NaN
1 -0.494375  0.570994
2       NaN       NaN
3  1.876360 -0.229738
4       NaN       NaN

In [8]: df.fillna(0)
Out[8]: 
          0         1
0  0.000000  0.000000
1 -0.494375  0.570994
2  0.000000  0.000000
3  1.876360 -0.229738
4  0.000000  0.000000

若要仅在一列中填充nan,请仅选择该列。在这种情况下,我使用inplace=True来实际改变df的内容。

In [12]: df[1].fillna(0, inplace=True)
Out[12]: 
0    0.000000
1    0.570994
2    0.000000
3   -0.229738
4    0.000000
Name: 1

In [13]: df
Out[13]: 
          0         1
0       NaN  0.000000
1 -0.494375  0.570994
2       NaN  0.000000
3  1.876360 -0.229738
4       NaN  0.000000

编辑:

为了避免SettingWithCopyWarning,使用内置的列特定功能:

df.fillna({1:0}, inplace=True)

已经有很多贡献了,但因为我是新来的,我仍然会提供意见。

在Pandas DataFrame中有两种方法将NaN值替换为0:

fillna():函数使用指定的方法填充NA/NaN值。 Replace (): df.replace()一个简单的方法,用于替换字符串,正则表达式,列表,字典

例子:

#NaN with zero on all columns
df2 = df.fillna(0)


#Using the inplace=True keyword in a pandas method changes the default behaviour.
    df.fillna(0, inplace = True)

# multiple columns appraoch
df[["Student", "ID"]] = df[["Student", "ID"]].fillna(0)

最后是replace()方法:

df["Student"] = df["Student"].replace(np.nan, 0)