我有一个由装饰器转移变量insurance_mode的问题。我将通过以下装饰器语句来实现:

@execute_complete_reservation(True)
def test_booking_gta_object(self):
    self.test_select_gta_object()

但不幸的是,这种说法并不管用。也许也许有更好的办法来解决这个问题。

def execute_complete_reservation(test_case,insurance_mode):
    def inner_function(self,*args,**kwargs):
        self.test_create_qsf_query()
        test_case(self,*args,**kwargs)
        self.test_select_room_option()
        if insurance_mode:
            self.test_accept_insurance_crosseling()
        else:
            self.test_decline_insurance_crosseling()
        self.test_configure_pax_details()
        self.test_configure_payer_details

    return inner_function

当前回答

例如,我在下面创建了multiply(),它可以接受一个参数或不接受参数,也可以不接受装饰器的括号,我在下面创建了sum():

from numbers import Number

def multiply(num=1):
    def _multiply(func):
        def core(*args, **kwargs):
            result = func(*args, **kwargs)
            if isinstance(num, Number):
                return result * num
            else:
                return result
        return core
    if callable(num):
        return _multiply(num)
    else:
        return _multiply

def sum(num1, num2):
    return num1 + num2

现在,我把@multiply(5)放在sum()上,然后调用sum(4,6),如下所示:

# (4 + 6) x 5 = 50

@multiply(5) # Here
def sum(num1, num2):
    return num1 + num2

result = sum(4, 6)
print(result)

那么,我可以得到如下结果:

50

接下来,我把@multiply()放在sum()上,然后调用sum(4,6),如下所示:

# (4 + 6) x 1 = 10

@multiply() # Here
def sum(num1, num2):
    return num1 + num2
    
result = sum(4, 6)
print(result)

或者,我把@multiply放在sum()上,然后调用sum(4,6),如下所示:

# 4 + 6 = 10

@multiply # Here
def sum(num1, num2):
    return num1 + num2
    
result = sum(4, 6)
print(result)

那么,我可以得到如下结果:

10

其他回答

定义这个decoratorize函数来生成定制的decorator函数:

def decoratorize(FUN, **kw):
    def foo(*args, **kws):
        return FUN(*args, **kws, **kw)
    return foo

可以这样用:

    @decoratorize(FUN, arg1 = , arg2 = , ...)
    def bar(...):
        ...

在我的实例中,我决定通过一行lambda来解决这个问题,以创建一个新的decorator函数:

def finished_message(function, message="Finished!"):

    def wrapper(*args, **kwargs):
        output = function(*args,**kwargs)
        print(message)
        return output

    return wrapper

@finished_message
def func():
    pass

my_finished_message = lambda f: finished_message(f, "All Done!")

@my_finished_message
def my_func():
    pass

if __name__ == '__main__':
    func()
    my_func()

执行时,输出:

Finished!
All Done!

也许不像其他解决方案那样可扩展,但对我来说是可行的。

匿名设置中的参数装饰。

在许多可能的“嵌套”语法糖装饰的两种变化中被提出。它们之间的区别在于执行wrt到目标函数的顺序,并且它们的效果通常是独立的(不相互作用)。

装饰器允许在目标函数执行之前或之后“注入”自定义函数。

这两个函数的调用都发生在一个元组中。默认情况下,返回值是目标函数的结果。

语法糖装饰@first_internal(send_msg)('…end')要求版本>= 3.9,请参阅PEP 614放松对装饰器的语法限制。

functools使用。以保留目标函数的文档字符串。

from functools import wraps


def first_external(f_external):
    return lambda *args_external, **kwargs_external:\
           lambda f_target: wraps(f_target)(
               lambda *args_target, **kwargs_target:
                  (f_external(*args_external, **kwargs_external),
                   f_target(*args_target, **kwargs_target))[1]
           )


def first_internal(f_external):
    return lambda *args_external, **kwargs_external:\
           lambda f_target: wraps(f_target)(
               lambda *args_target, **kwargs_target:
                  (f_target(*args_target, **kwargs_target),
                   f_external(*args_external, **kwargs_external))[0]
           )


def send_msg(x):
   print('msg>', x)


@first_internal(send_msg)('...end')    # python >= 3.9
@first_external(send_msg)("start...")  # python >= 3.9
def test_function(x):
    """Test function"""
    print('from test_function')
    return x


test_function(2)

输出

msg> start...
from test_function
msg> ...end

讲话

composition decorators, such as pull-back and push-forward (maybe in a more Computer Science terminology: co- and resp. contra-variant decorator), could more useful but need ad-hoc care, for example composition rules, check which parameters go where, etc syntactic sugar acts as a kind of partial of the target function: once decorated there is no way back (without extra imports) but it is not mandatory, a decorator can be used also in its extended forms, i.e. first_external(send_msg)("start...")(test_function)(2) the results of a workbench with timeit.repeat(..., repeat=5, number=10000) which compare the classical def and lambda decoration shows that are almost equivalent: for lambda: [6.200810984999862, 6.035239247000391, 5.346362481000142, 5.987880147000396, 5.5331550319997405] - mean -> 5.8206 for def: [6.165001932999985, 5.554595884999799, 5.798066574999666, 5.678178028000275, 5.446507932999793] - mean -> 5.7284 naturally an non-anonymous counterpart is possible and provides more flexibility

带参数的装饰器的语法有点不同——带参数的装饰器应该返回一个函数,该函数将接受一个函数并返回另一个函数。它应该返回一个普通的装饰器。有点困惑,对吧?我的意思是:

def decorator_factory(argument):
    def decorator(function):
        def wrapper(*args, **kwargs):
            funny_stuff()
            something_with_argument(argument)
            result = function(*args, **kwargs)
            more_funny_stuff()
            return result
        return wrapper
    return decorator

在这里你可以读到更多关于这个主题的内容——也可以使用可调用对象来实现这个功能,这里也有解释。

这是curry函数的一个很好的用例。

curry函数本质上是延迟函数的调用,直到提供了所有输入。

这可以用于各种事情,如包装器或函数式编程。在本例中,让我们创建一个接受输入的包装器。

我将使用一个简单的包pamda,其中包含一个用于python的curry函数。这可以用作其他函数的包装器。

安装 Pamda:

pip install pamda

创建一个简单的带有两个输入的装饰函数:

@pamda.curry()
def my_decorator(input, func):
    print ("Executing Decorator")
    print(f"input:{input}")
    return func

使用提供给目标函数的第一个输入应用你的装饰器:

@my_decorator('Hi!')
def foo(input):
    print('Executing Foo!')
    print(f"input:{input}")

执行你的包装函数:

x=foo('Bye!')

把所有东西放在一起:

from pamda import pamda

@pamda.curry()
def my_decorator(input, func):
    print ("Executing Decorator")
    print(f"input:{input}")
    return func

@my_decorator('Hi!')
def foo(input):
    print('Executing Foo!')
    print(f"input:{input}")

x=foo('Bye!')

将:

Executing Decorator
input:Hi!
Executing Foo!
input:Bye!