我想把这些结合起来:
keys = ['name', 'age', 'food']
values = ['Monty', 42, 'spam']
在单个词典中:
{'name': 'Monty', 'age': 42, 'food': 'spam'}
我想把这些结合起来:
keys = ['name', 'age', 'food']
values = ['Monty', 42, 'spam']
在单个词典中:
{'name': 'Monty', 'age': 42, 'food': 'spam'}
当前回答
当我试图解决一个与图形相关的问题时,我产生了这种怀疑。我遇到的问题是,我需要定义一个空的邻接列表,并想用一个空列表初始化所有节点,这就是我想如何检查它是否足够快的时候,我的意思是,它是否值得执行zip操作,而不是简单的赋值键值对。在大多数情况下,时间因素是一个重要的破冰因素。所以我对两种方法都进行了timeit操作。
import timeit
def dictionary_creation(n_nodes):
dummy_dict = dict()
for node in range(n_nodes):
dummy_dict[node] = []
return dummy_dict
def dictionary_creation_1(n_nodes):
keys = list(range(n_nodes))
values = [[] for i in range(n_nodes)]
graph = dict(zip(keys, values))
return graph
def wrapper(func, *args, **kwargs):
def wrapped():
return func(*args, **kwargs)
return wrapped
iteration = wrapper(dictionary_creation, n_nodes)
shorthand = wrapper(dictionary_creation_1, n_nodes)
for trail in range(1, 8):
print(f'Itertion: {timeit.timeit(iteration, number=trails)}\nShorthand: {timeit.timeit(shorthand, number=trails)}')
对于n_nodes=10000000我明白了,
迭代次数:2.825081646999024速记:3.535717916001886
迭代:5.051560923002398速记:6.255070794999483
迭代次数:6.52859034499852速记:8.221581164998497
迭代次数:8.683652416999394速记:12.599181543999293
迭代次数:11.587241565001023速记员:15.27298851100204
迭代次数:14.816342867001367速记员:17.162912737003353
迭代次数:16.645022411001264速记员:19.976680120998935
您可以清楚地看到,在某一点之后,第n步的迭代方法超过了第n-1步的速记方法所花费的时间。
其他回答
试试看:
>>> import itertools
>>> keys = ('name', 'age', 'food')
>>> values = ('Monty', 42, 'spam')
>>> adict = dict(itertools.izip(keys,values))
>>> adict
{'food': 'spam', 'age': 42, 'name': 'Monty'}
在Python2中,与zip相比,它的内存消耗也更经济。
如果在创建字典之前需要转换键或值,那么可以使用生成器表达式。例子:
>>> adict = dict((str(k), v) for k, v in zip(['a', 1, 'b'], [2, 'c', 3]))
看一看《像蟒蛇一样的代码:惯用Python》。
当我试图解决一个与图形相关的问题时,我产生了这种怀疑。我遇到的问题是,我需要定义一个空的邻接列表,并想用一个空列表初始化所有节点,这就是我想如何检查它是否足够快的时候,我的意思是,它是否值得执行zip操作,而不是简单的赋值键值对。在大多数情况下,时间因素是一个重要的破冰因素。所以我对两种方法都进行了timeit操作。
import timeit
def dictionary_creation(n_nodes):
dummy_dict = dict()
for node in range(n_nodes):
dummy_dict[node] = []
return dummy_dict
def dictionary_creation_1(n_nodes):
keys = list(range(n_nodes))
values = [[] for i in range(n_nodes)]
graph = dict(zip(keys, values))
return graph
def wrapper(func, *args, **kwargs):
def wrapped():
return func(*args, **kwargs)
return wrapped
iteration = wrapper(dictionary_creation, n_nodes)
shorthand = wrapper(dictionary_creation_1, n_nodes)
for trail in range(1, 8):
print(f'Itertion: {timeit.timeit(iteration, number=trails)}\nShorthand: {timeit.timeit(shorthand, number=trails)}')
对于n_nodes=10000000我明白了,
迭代次数:2.825081646999024速记:3.535717916001886
迭代:5.051560923002398速记:6.255070794999483
迭代次数:6.52859034499852速记:8.221581164998497
迭代次数:8.683652416999394速记:12.599181543999293
迭代次数:11.587241565001023速记员:15.27298851100204
迭代次数:14.816342867001367速记员:17.162912737003353
迭代次数:16.645022411001264速记员:19.976680120998935
您可以清楚地看到,在某一点之后,第n步的迭代方法超过了第n-1步的速记方法所花费的时间。
keys = ('name', 'age', 'food')
values = ('Monty', 42, 'spam')
out = dict(zip(keys, values))
输出:
{'food': 'spam', 'age': 42, 'name': 'Monty'}
这里还有一个在字典中添加列表值的示例
list1 = ["Name", "Surname", "Age"]
list2 = [["Cyd", "JEDD", "JESS"], ["DEY", "AUDIJE", "PONGARON"], [21, 32, 47]]
dic = dict(zip(list1, list2))
print(dic)
始终确保“Key”(列表1)始终位于第一个参数中。
{'Name': ['Cyd', 'JEDD', 'JESS'], 'Surname': ['DEY', 'AUDIJE', 'PONGARON'], 'Age': [21, 32, 47]}