什么是协程?它们与并发性有什么关系?
当前回答
Kotlin 协程
[同步与异步]
[并发vs并行]
通常我们认为协程是轻量级线程,它们允许我们以同步的方式编写异步的、非阻塞的代码
至于Kotlin协程:
协程是一个合成糖/附加层,它允许你以非阻塞的方式运行任务,没有回调。协程由以下组件组成:
延续 作业-管理程序和保存它的状态 CoroutineScope(包含作业和Xontext)——处理作业组(层次结构)并管理它们(启动和取消) Dispatcher -用于处理线程池- Main, IO, Default… 上下文-像Map这样的数据结构,以保存一些日期,如Job, Dispatcher和自定义数据
让我们回顾一些例子
class MyClass {
val network = Network()
val fileSystem = FileSystem()
suspend fun downloadFile(): File {
//suspendCoroutine is key point
return suspendCoroutine { continuation ->
network.download(callback: Network.Callback {
override fun onSuccess(file: File) {
continuation.resume(file)
}
})
}
}
suspend fun saveFile(file: File) {
//suspendCoroutine is key point
return suspendCoroutine { continuation ->
fileSystem.save(callback: FileSystem.Callback {
override fun onSuccess() {
continuation.resume()
}
})
}
}
GlobalScope.launch {
val downloadResult = downloadFile() //1. suspend function
show(downloadResult) //2. UI
saveFile(downloadResult) //3. suspend function
}
延续
它创建了Continuation类,它是一个状态机,内部有invokeSuspend()函数。在任何挂起函数的末尾调用invokeSuspend()(像回调一样)
class Continuation {
int label;
//block of local variabels
File file;
void invokeSuspend(Object result) {
switch (label) {
case 0: {
label = 1;
downloadFile(this); //1. suspend function
return;
}
case 1: {
file = (File) result; //work with result
show(file); //2. UI
saveFile(file, this); //3.suspend function
return;
}
}
}
}
class MyClass {
fun downloadFile(continuation: Continuation): File {
//logic
continuation.invokeSuspend(file)
}
fun saveFile(file: File, continuation: Continuation) {
//logic
continuation.invokeSuspend()
}
}
暂停
suspended只是一个函数的标记,它将被添加新的延续参数(continue: continue) 分割状态机,这意味着它可以暂停机器 暂停函数应该在Continuation.resume() -> Continuation. invokesuspend()中调用Continuation.resume() 挂起的函数只能从couroutine调用
协程的行为完全依赖于库的实现
其他回答
另一方面, 在python中,gevent库是一个基于协程的网络库,它为您提供线程类功能,如异步网络请求,而无需创建和销毁线程的开销。所使用的协程库是绿色的。
If you are still confused, here is a very simple way of understanding a co-routine. First off, what is a routine? In a lay man's term, a routine is something that we do again and again (for example, your morning routine). Similarly. in programming languages, a routine is a piece of code that we use again and again, e.g., a function. Now, if you look at the general characteristic of a function or routine (note: I am cautiously using these two terms interchangeably), it takes some inputs and hogs the CPU threads for as long as the function needs to output the result. Meaning, functions or routines are blocking calls in you code. However, a co-routine is a special kind of routine that can co-exist (the "co" part of the word co-routine comes from this) with other routines at the same time and we can make this happen in programming languages with the help of asynchronous programming. In Asynchronous programming, when one co-routine is waiting for something to happen (e.g., disk io), the other co-routine will start working and when this co-routine is in a waiting state the other co-routine will be active ultimately reducing the waiting time of our code.
如果你理解了上面的内容,让我们看看如何在Python中创建协程函数。可以像下面那样定义协程函数-
async def my_coroutine_function():
return 123
你可以通过在协同程序-前面添加await来调用上面的协同程序
my_result = await my_coroutine_function()
最后,
当你正在看电视节目,广告一出现,你就拿起手机给朋友发短信——你刚刚做的就是异步编程。当你的电视节目(一个合作程序)处于等待状态时,你继续前进,让你的另一个合作程序(给你的朋友发短信)处于激活状态。
在Lua编程中,“协程”部分:
A coroutine is similar to a thread (in the sense of multithreading): it is a line of execution, with its own stack, its own local variables, and its own instruction pointer; but it shares global variables and mostly anything else with other coroutines. The main difference between threads and coroutines is that, conceptually (or literally, in a multiprocessor machine), a program with threads runs several threads in parallel. Coroutines, on the other hand, are collaborative: at any given time, a program with coroutines is running only one of its coroutines, and this running coroutine suspends its execution only when it explicitly requests to be suspended.
所以关键是:协程是“协作的”。即使在多核系统中,也只有一个协程在任何给定时间运行(但多个线程可以并行运行)。协程之间存在不可抢占性,运行中的协程必须显式放弃执行。
关于“并发性”,你可以参考Rob Pike的幻灯片:
并发是独立执行计算的组合。
所以在协程A的执行过程中,它把控制权传递给了协程B。经过一段时间后,协程B又把控制权传递给了协程A。由于协程之间存在依赖关系,它们必须串联运行,所以这两个协程不是并发的。
协程和并发在很大程度上是正交的。协程是一种通用的控制结构,流控制在两个不同的例程之间协作传递而不返回。
Python中的'yield'语句就是一个很好的例子。它创建了一个协程。当遇到yield时,将保存函数的当前状态,并将控制返回给调用函数。然后,调用函数可以将执行转移回屈服函数,它的状态将恢复到遇到“屈服”的位置,并继续执行。
我将详述@user21714的答案。协程是独立的执行路径,不能同时运行。它们依赖于一个控制器(例如python控制器库)来处理这些路径之间的切换。但是为了实现这一点,协同程序本身需要调用yield或类似的结构,以允许它们的执行暂停。
相反,线程运行在独立的计算资源上,并且彼此并行。由于它们位于不同的资源上,因此不需要调用yield来允许其他执行路径继续进行。
您可以通过启动一个多线程程序(例如jvm应用程序)来看到这种效果,其中所有八个核心i7超线程核心都被利用了:您可能会在Activity Monitor或Top中看到797%的利用率。相反,当运行一个典型的python程序(即使是带有协程或python线程的程序)时,利用率最高将达到100%。例如,一台机器超线程。