人们使用什么技巧来管理交互式R会话的可用内存?我使用下面的函数[基于Petr Pikal和David Hinds在2004年发布的r-help列表]来列出(和/或排序)最大的对象,并偶尔rm()其中一些对象。但到目前为止最有效的解决办法是……在64位Linux下运行,有充足的内存。

大家还有什么想分享的妙招吗?请每人寄一份。

# improved list of objects
.ls.objects <- function (pos = 1, pattern, order.by,
                        decreasing=FALSE, head=FALSE, n=5) {
    napply <- function(names, fn) sapply(names, function(x)
                                         fn(get(x, pos = pos)))
    names <- ls(pos = pos, pattern = pattern)
    obj.class <- napply(names, function(x) as.character(class(x))[1])
    obj.mode <- napply(names, mode)
    obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
    obj.size <- napply(names, object.size)
    obj.dim <- t(napply(names, function(x)
                        as.numeric(dim(x))[1:2]))
    vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
    obj.dim[vec, 1] <- napply(names, length)[vec]
    out <- data.frame(obj.type, obj.size, obj.dim)
    names(out) <- c("Type", "Size", "Rows", "Columns")
    if (!missing(order.by))
        out <- out[order(out[[order.by]], decreasing=decreasing), ]
    if (head)
        out <- head(out, n)
    out
}
# shorthand
lsos <- function(..., n=10) {
    .ls.objects(..., order.by="Size", decreasing=TRUE, head=TRUE, n=n)
}

当前回答

Tip for dealing with objects requiring heavy intermediate calculation: When using objects that require a lot of heavy calculation and intermediate steps to create, I often find it useful to write a chunk of code with the function to create the object, and then a separate chunk of code that gives me the option either to generate and save the object as an rmd file, or load it externally from an rmd file I have already previously saved. This is especially easy to do in R Markdown using the following code-chunk structure.

```{r Create OBJECT}

COMPLICATED.FUNCTION <- function(...) { Do heavy calculations needing lots of memory;
                                        Output OBJECT; }

```
```{r Generate or load OBJECT}

LOAD <- TRUE
SAVE <- TRUE
#NOTE: Set LOAD to TRUE if you want to load saved file
#NOTE: Set LOAD to FALSE if you want to generate the object from scratch
#NOTE: Set SAVE to TRUE if you want to save the object externally

if(LOAD) { 
  OBJECT <- readRDS(file = 'MySavedObject.rds') 
} else {
  OBJECT <- COMPLICATED.FUNCTION(x, y, z)
  if (SAVE) { saveRDS(file = 'MySavedObject.rds', object = OBJECT) } }

```

With this code structure, all I need to do is to change LOAD depending on whether I want to generate the object, or load it directly from an existing saved file. (Of course, I have to generate it and save it the first time, but after this I have the option of loading it.) Setting LOAD <- TRUE bypasses use of my complicated function and avoids all of the heavy computation therein. This method still requires enough memory to store the object of interest, but it saves you from having to calculate it each time you run your code. For objects that require a lot of heavy calculation of intermediate steps (e.g., for calculations involving loops over large arrays) this can save a substantial amount of time and computation.

其他回答

运行

for (i in 1:10) 
    gc(reset = T)

还可以帮助R释放未使用但仍未释放的内存。

除了以上回答中给出的更通用的内存管理技术外,我总是尽可能地减小对象的大小。例如,我处理非常大但非常稀疏的矩阵,换句话说,大多数值为零的矩阵。使用“矩阵”包(大写很重要),我能够将我的平均对象大小从~2GB减小到~200MB,简单如下:

my.matrix <- Matrix(my.matrix)

Matrix包包含的数据格式可以像常规矩阵一样使用(不需要更改其他代码),但能够更有效地存储稀疏数据,无论是加载到内存中还是保存到磁盘中。

此外,我收到的原始文件是“长”格式的,其中每个数据点都有变量x, y, z, I。将数据转换为只有变量I的x * y * z维度数组更有效。

了解你的数据并使用一些常识。

在将数据框架传递给回归函数的data=参数时,我积极地使用子集参数,只选择所需的变量。如果我忘记向公式和select=向量添加变量,确实会导致一些错误,但由于减少了对象的复制,它仍然节省了大量时间,并显著减少了内存占用。假设我有400万条记录和110个变量(我确实有)。例子:

# library(rms); library(Hmisc) for the cph,and rcs functions
Mayo.PrCr.rbc.mdl <- 
cph(formula = Surv(surv.yr, death) ~ age + Sex + nsmkr + rcs(Mayo, 4) + 
                                     rcs(PrCr.rat, 3) +  rbc.cat * Sex, 
     data = subset(set1HLI,  gdlab2 & HIVfinal == "Negative", 
                           select = c("surv.yr", "death", "PrCr.rat", "Mayo", 
                                      "age", "Sex", "nsmkr", "rbc.cat")
   )            )

通过设置上下文和策略:gdlab2变量是一个逻辑向量,它是为一组实验室测试的所有正常或几乎正常值的数据集中的主题构建的,而HIVfinal是一个字符向量,总结了艾滋病毒的初步和确认测试。

如果真的想避免泄漏,应该避免在全局环境中创建任何大对象。

我通常做的是有一个函数来完成这项工作并返回NULL -所有数据都在这个函数或它调用的其他函数中读取和操作。

我从不保存R工作区。我使用导入脚本和数据脚本,并将我不想经常重新创建的任何特别大的数据对象输出到文件。这样,我总是从一个新的工作空间开始,不需要清理大的物体。这是一个很好的函数。