在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

计算多维空间的欧氏距离:

 import math

 x = [1, 2, 6] 
 y = [-2, 3, 2]

 dist = math.sqrt(sum([(xi-yi)**2 for xi,yi in zip(x, y)]))
 5.0990195135927845

其他回答

这里有一些简洁的Python欧几里得距离代码,给出了Python中以列表表示的两个点。

def distance(v1,v2): 
    return sum([(x-y)**2 for (x,y) in zip(v1,v2)])**(0.5)

计算多维空间的欧氏距离:

 import math

 x = [1, 2, 6] 
 y = [-2, 3, 2]

 dist = math.sqrt(sum([(xi-yi)**2 for xi,yi in zip(x, y)]))
 5.0990195135927845
import numpy as np
from scipy.spatial import distance
input_arr = np.array([[0,3,0],[2,0,0],[0,1,3],[0,1,2],[-1,0,1],[1,1,1]]) 
test_case = np.array([0,0,0])
dst=[]
for i in range(0,6):
    temp = distance.euclidean(test_case,input_arr[i])
    dst.append(temp)
print(dst)

从Python 3.8开始,math模块直接提供dist函数,它返回两点之间的欧几里得距离(以元组或坐标列表的形式给出):

from math import dist

dist((1, 2, 6), (-2, 3, 2)) # 5.0990195135927845

如果你使用列表:

dist([1, 2, 6], [-2, 3, 2]) # 5.0990195135927845

你可以减去向量,然后内积。

以你为榜样,

a = numpy.array((xa, ya, za))
b = numpy.array((xb, yb, zb))

tmp = a - b
sum_squared = numpy.dot(tmp.T, tmp)
result = numpy.sqrt(sum_squared)