在三维空间中有两个点

a = (ax, ay, az)
b = (bx, by, bz)

我想计算它们之间的距离:

dist = sqrt((ax-bx)^2 + (ay-by)^2 + (az-bz)^2)

我如何用NumPy做到这一点?我有:

import numpy
a = numpy.array((ax, ay, az))
b = numpy.array((bx, by, bz))

当前回答

其他答案适用于浮点数,但不能正确计算整数dtype的距离,因为整数dtype容易溢出和下溢。注意,即使scipy.distance.euclidean也有这个问题:

>>> a1 = np.array([1], dtype='uint8')
>>> a2 = np.array([2], dtype='uint8')
>>> a1 - a2
array([255], dtype=uint8)
>>> np.linalg.norm(a1 - a2)
255.0
>>> from scipy.spatial import distance
>>> distance.euclidean(a1, a2)
255.0

这是很常见的,因为许多图像库将图像表示为dtype="uint8"的ndarray。这意味着,如果你有一个由深灰色像素组成的灰度图像(比如所有像素的颜色都是#000001),你将它与黑色图像(#000000)进行区分,你最终可以在所有单元格中得到x-y为255的图像,这表明两张图像彼此相距很远。对于无符号整数类型(例如uint8),你可以安全地在numpy中计算距离:

np.linalg.norm(np.maximum(x, y) - np.minimum(x, y))

对于有符号整型,可以先转换为浮点类型:

np.linalg.norm(x.astype("float") - y.astype("float"))

对于图像数据,你可以使用opencv的norm方法:

import cv2
cv2.norm(x, y, cv2.NORM_L2)

其他回答

我喜欢np。点(点积):

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))

distance = (np.dot(a-b,a-b))**.5
import numpy as np
from scipy.spatial import distance
input_arr = np.array([[0,3,0],[2,0,0],[0,1,3],[0,1,2],[-1,0,1],[1,1,1]]) 
test_case = np.array([0,0,0])
dst=[]
for i in range(0,6):
    temp = distance.euclidean(test_case,input_arr[i])
    dst.append(temp)
print(dst)

这种解决问题方法的另一个例子:

def dist(x,y):   
    return numpy.sqrt(numpy.sum((x-y)**2))

a = numpy.array((xa,ya,za))
b = numpy.array((xb,yb,zb))
dist_a_b = dist(a,b)

其他答案适用于浮点数,但不能正确计算整数dtype的距离,因为整数dtype容易溢出和下溢。注意,即使scipy.distance.euclidean也有这个问题:

>>> a1 = np.array([1], dtype='uint8')
>>> a2 = np.array([2], dtype='uint8')
>>> a1 - a2
array([255], dtype=uint8)
>>> np.linalg.norm(a1 - a2)
255.0
>>> from scipy.spatial import distance
>>> distance.euclidean(a1, a2)
255.0

这是很常见的,因为许多图像库将图像表示为dtype="uint8"的ndarray。这意味着,如果你有一个由深灰色像素组成的灰度图像(比如所有像素的颜色都是#000001),你将它与黑色图像(#000000)进行区分,你最终可以在所有单元格中得到x-y为255的图像,这表明两张图像彼此相距很远。对于无符号整数类型(例如uint8),你可以安全地在numpy中计算距离:

np.linalg.norm(np.maximum(x, y) - np.minimum(x, y))

对于有符号整型,可以先转换为浮点类型:

np.linalg.norm(x.astype("float") - y.astype("float"))

对于图像数据,你可以使用opencv的norm方法:

import cv2
cv2.norm(x, y, cv2.NORM_L2)

计算多维空间的欧氏距离:

 import math

 x = [1, 2, 6] 
 y = [-2, 3, 2]

 dist = math.sqrt(sum([(xi-yi)**2 for xi,yi in zip(x, y)]))
 5.0990195135927845