我试图对一个整数进行mod以获得一个数组位置,这样它就会循环。做i % arrayLength适用于正数,但对于负数就完全出错了。

 4 % 3 == 1
 3 % 3 == 0
 2 % 3 == 2
 1 % 3 == 1
 0 % 3 == 0
-1 % 3 == -1
-2 % 3 == -2
-3 % 3 == 0
-4 % 3 == -1

我需要一个实现

int GetArrayIndex(int i, int arrayLength)

这样

GetArrayIndex( 4, 3) == 1
GetArrayIndex( 3, 3) == 0
GetArrayIndex( 2, 3) == 2
GetArrayIndex( 1, 3) == 1
GetArrayIndex( 0, 3) == 0
GetArrayIndex(-1, 3) == 2
GetArrayIndex(-2, 3) == 1
GetArrayIndex(-3, 3) == 0
GetArrayIndex(-4, 3) == 2

我以前也这么做过,但不知为何,今天我的脑子都要融化了:(


当前回答

增加一些理解。

根据欧几里得的定义,取模的结果必须总是正的。

Ex:

 int n = 5;
 int x = -3;

 int mod(int n, int x)
 {
     return ((n%x)+x)%x;
 }

输出:

 -1

其他回答

dcastro的答案的单行实现(与其他语言最兼容):

int Mod(int a, int n)
{
    return (((a %= n) < 0) && n > 0) || (a > 0 && n < 0) ? a + n : a;
}

如果你想保留%操作符的使用(在c#中你不能重载本机操作符):

public class IntM
{
    private int _value;

    private IntM(int value)
    {
        _value = value;
    }

    private static int Mod(int a, int n)
    {
        return (((a %= n) < 0) && n > 0) || (a > 0 && n < 0) ? a + n : a;
    }

    public static implicit operator int(IntM i) => i._value;
    public static implicit operator IntM(int i) => new IntM(i);
    public static int operator %(IntM a, int n) => Mod(a, n);
    public static int operator %(int a, IntM n) => Mod(a, n);
}

用例,两者都适用:

int r = (IntM)a % n;

// Or
int r = a % n(IntM);

增加一些理解。

根据欧几里得的定义,取模的结果必须总是正的。

Ex:

 int n = 5;
 int x = -3;

 int mod(int n, int x)
 {
     return ((n%x)+x)%x;
 }

输出:

 -1

mod函数有很多实现,我认为有必要列出所有实现——至少根据维基百科,我相信还有更多。

// Important to be able to use `MathF`.
using System;

public static class MathFUtils {
    public static class Mod {
        public static float Trunc(float a, float b) =>
            a - b * ((int)(a / b));

        public static float Round(float a, float b) =>
            a - b * MathF.Round(a / b);

        public static float Floor(float a, float b) =>
            a - b * MathF.Floor(a / b);

        public static float Ceil(float a, float b) =>
            a - b * MathF.Ceiling(a / b);

        public static float Euclidean(float a, float b) =>
            a - MathF.Abs(b) * MathF.Floor(a / MathF.Abs(b));
    }
}

根据维基百科(以及我的经验),坚持欧几里得。它在数学和概率性质方面是最有用的。如果您需要Trunc,那么我相信%可以做到这一点。

此外,对于那些可能对它们各自做什么以及如何做感到困惑的人,我强烈建议阅读维基百科的文章(即使很难)并查看每个表示的图像。

当然,这些不一定是性能最好的,但它们确实有效。如果你关心性能,我建议你找一个本地的c#之神,或者在他们经过我们的尘世时问他。

对于更注重性能的开发人员

uint wrap(int k, int n) ((uint)k)%n

一个小的性能比较

Modulo: 00:00:07.2661827 ((n%x)+x)%x)
Cast:   00:00:03.2202334 ((uint)k)%n
If:     00:00:13.5378989 ((k %= n) < 0) ? k+n : k

至于浇注到uint的性能成本在这里看一下

我喜欢Peter N Lewis在这篇文章中提出的技巧:“如果N有一个有限的范围,那么你可以通过添加一个已知的常数倍数(除数)来得到你想要的结果,这个倍数大于最小值的绝对值。”

如果我有一个以度数为单位的值d,我想取

d % 180f

我想避免d为负时的问题,那么我就这样做:

(d + 720f) % 180f

这里假设d可能是负数,但已知它永远不会大于-720。