我目前在mysql数据库中有不到一百万个位置,都有经度和纬度信息。

我试图通过查询找到一个点和许多其他点之间的距离。它没有我想要的那么快,尤其是每秒100+次。

有没有比mysql更快的查询或更快的系统?我使用这个查询:

SELECT 
  name, 
   ( 3959 * acos( cos( radians(42.290763) ) * cos( radians( locations.lat ) ) 
   * cos( radians(locations.lng) - radians(-71.35368)) + sin(radians(42.290763)) 
   * sin( radians(locations.lat)))) AS distance 
FROM locations 
WHERE active = 1 
HAVING distance < 10 
ORDER BY distance;

注:提供的距离单位为英里。如果需要公里,请使用6371而不是3959。


当前回答

如果你使用的是MySQL 5.7。*,那么你可以使用st_distance_sphere(POINT, POINT)。

Select st_distance_sphere(POINT(-2.997065, 53.404146 ), POINT(58.615349, 23.56676 ))/1000  as distcance

其他回答

这里是一个非常详细的描述地理距离搜索MySQL的一个解决方案的基础上实现的Haversine公式到MySQL。完整的解决方案描述,包括理论、实现和进一步的性能优化。尽管空间优化部分在我的案例中没有正确工作。 http://www.scribd.com/doc/2569355/Geo-Distance-Search-with-MySQL

Create your points using Point values of Geometry data types in MyISAM table. As of Mysql 5.7.5, InnoDB tables now also support SPATIAL indices. Create a SPATIAL index on these points Use MBRContains() to find the values: SELECT * FROM table WHERE MBRContains(LineFromText(CONCAT( '(' , @lon + 10 / ( 111.1 / cos(RADIANS(@lat))) , ' ' , @lat + 10 / 111.1 , ',' , @lon - 10 / ( 111.1 / cos(RADIANS(@lat))) , ' ' , @lat - 10 / 111.1 , ')' ) ,mypoint)

,或MySQL 5.1及以上版本:

    SELECT  *
    FROM    table
    WHERE   MBRContains
                    (
                    LineString
                            (
                            Point (
                                    @lon + 10 / ( 111.1 / COS(RADIANS(@lat))),
                                    @lat + 10 / 111.1
                                  ),
                            Point (
                                    @lon - 10 / ( 111.1 / COS(RADIANS(@lat))),
                                    @lat - 10 / 111.1
                                  ) 
                            ),
                    mypoint
                    )

这将选择方框内的所有点(@lat +/- 10km, @lon +/- 10km)。

这实际上不是一个盒子,而是一个球面矩形:纬度和经度绑定的球面段。这可能与弗朗茨约瑟夫土地上的普通矩形不同,但在大多数有人居住的地方都很接近。

应用额外的过滤来选择圆内的所有内容(不是正方形) 可能会应用额外的精细过滤来考虑大的圆距离(对于大的距离)

一个快速,简单和准确(对于较小的距离)的近似可以用球面投影完成。至少在我的路由算法中,与正确的计算相比,我得到了20%的提升。在Java代码中,它看起来像:

public double approxDistKm(double fromLat, double fromLon, double toLat, double toLon) {
    double dLat = Math.toRadians(toLat - fromLat);
    double dLon = Math.toRadians(toLon - fromLon);
    double tmp = Math.cos(Math.toRadians((fromLat + toLat) / 2)) * dLon;
    double d = dLat * dLat + tmp * tmp;
    return R * Math.sqrt(d);
}

不太了解MySQL(对不起!)。

请确保您了解限制(assertEquals的第三个参数表示以公里为单位的精度):

    float lat = 24.235f;
    float lon = 47.234f;
    CalcDistance dist = new CalcDistance();
    double res = 15.051;
    assertEquals(res, dist.calcDistKm(lat, lon, lat - 0.1, lon + 0.1), 1e-3);
    assertEquals(res, dist.approxDistKm(lat, lon, lat - 0.1, lon + 0.1), 1e-3);

    res = 150.748;
    assertEquals(res, dist.calcDistKm(lat, lon, lat - 1, lon + 1), 1e-3);
    assertEquals(res, dist.approxDistKm(lat, lon, lat - 1, lon + 1), 1e-2);

    res = 1527.919;
    assertEquals(res, dist.calcDistKm(lat, lon, lat - 10, lon + 10), 1e-3);
    assertEquals(res, dist.approxDistKm(lat, lon, lat - 10, lon + 10), 10);
SELECT * FROM (SELECT *,(((acos(sin((43.6980168*pi()/180)) * 
sin((latitude*pi()/180))+cos((43.6980168*pi()/180)) * 
cos((latitude*pi()/180)) * cos(((7.266903899999988- longitude)* 
pi()/180))))*180/pi())*60*1.1515 ) as distance 
FROM wp_users WHERE 1 GROUP BY ID limit 0,10) as X 
ORDER BY ID DESC

这是MySQL中点与点之间的距离计算查询,我已经在一个长数据库中使用过它,它工作完美!注意:根据您的需求进行更改(数据库名称,表名称,列等)。

   select
   (((acos(sin(('$latitude'*pi()/180)) * sin((`lat`*pi()/180))+cos(('$latitude'*pi()/180)) 
    * cos((`lat`*pi()/180)) * cos((('$longitude'- `lng`)*pi()/180))))*180/pi())*60*1.1515) 
    AS distance
    from table having distance<22;