我构造了一个条件,从我的数据帧中提取一行:
d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]
现在我想从一个特定的列中取一个值:
val = d2['col_name']
但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?
我构造了一个条件,从我的数据帧中提取一行:
d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]
现在我想从一个特定的列中取一个值:
val = d2['col_name']
但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?
当前回答
将它转换为整数对我有用:
int(sub_df.iloc[0])
其他回答
如果你有一个只有一行的DataFrame,那么使用iloc访问第一行作为Series,然后使用列名访问值:
In [3]: sub_df
Out[3]:
A B
2 -0.133653 -0.030854
In [4]: sub_df.iloc[0]
Out[4]:
A -0.133653
B -0.030854
Name: 2, dtype: float64
In [5]: sub_df.iloc[0]['A']
Out[5]: -0.13365288513107493
对于pandas 0.10(其中iloc不可用),过滤DF并获取VALUE列的第一行数据:
df_filt = df[df['C1'] == C1val & df['C2'] == C2val]
result = df_filt.get_value(df_filt.index[0],'VALUE')
如果过滤了多个行,则获取第一行的值。如果筛选结果为空数据帧,则会出现异常。
这些是标量的快速访问方法:
In [15]: df = pandas.DataFrame(numpy.random.randn(5, 3), columns=list('ABC'))
In [16]: df
Out[16]:
A B C
0 -0.074172 -0.090626 0.038272
1 -0.128545 0.762088 -0.714816
2 0.201498 -0.734963 0.558397
3 1.563307 -1.186415 0.848246
4 0.205171 0.962514 0.037709
In [17]: df.iat[0, 0]
Out[17]: -0.074171888537611502
In [18]: df.at[0, 'A']
Out[18]: -0.074171888537611502
df_gdp.columns
Index([u'Country', u'Country Code', u'Indicator Name', u'Indicator Code', u'1960', u'1961', u'1962', u'1963', u'1964', u'1965', u'1966', u'1967', u'1968', u'1969', u'1970', u'1971', u'1972', u'1973', u'1974', u'1975', u'1976', u'1977', u'1978', u'1979', u'1980', u'1981', u'1982', u'1983', u'1984', u'1985', u'1986', u'1987', u'1988', u'1989', u'1990', u'1991', u'1992', u'1993', u'1994', u'1995', u'1996', u'1997', u'1998', u'1999', u'2000', u'2001', u'2002', u'2003', u'2004', u'2005', u'2006', u'2007', u'2008', u'2009', u'2010', u'2011', u'2012', u'2013', u'2014', u'2015', u'2016'], dtype='object')
df_gdp[df_gdp["Country Code"] == "USA"]["1996"].values[0]
8100000000000.0
看起来像是熊猫10.1或13.1之后的变化。
我从10.1升级到13.1。以前,iloc是不可用的。
现在在13.1版本中,iloc[0]['label']获得一个值数组,而不是一个标量。
是这样的:
lastprice = stock.iloc[-1]['Close']
输出:
date
2014-02-26 118.2
name:Close, dtype: float64