我构造了一个条件,从我的数据帧中提取一行:
d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]
现在我想从一个特定的列中取一个值:
val = d2['col_name']
但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?
我构造了一个条件,从我的数据帧中提取一行:
d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]
现在我想从一个特定的列中取一个值:
val = d2['col_name']
但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?
当前回答
你可以把你的1x1数据帧转换成一个NumPy数组,然后访问该数组的第一个也是唯一的值:
val = d2['col_name'].values[0]
其他回答
我需要一个单元格的值,按列名和索引名选择。 这个解决方案对我很有效:
original_conversion_frequency.loc [1:] . values [0]
大多数答案都是使用iloc,它适合按位置选择。
如果需要按标签选择,loc会更方便。
显式获取值(相当于已弃用 df.get_value (' a ', ' ')) #这也等价于df1.at['a',' a'] 在[55]:df1中。loc [' a ', ' ') [55]: 0.13200317033032932
要获得完整行的值为JSON(而不是一个Serie):
row = df.iloc[0]
像下面这样使用to_json方法:
row.to_json()
你可以把你的1x1数据帧转换成一个NumPy数组,然后访问该数组的第一个也是唯一的值:
val = d2['col_name'].values[0]
将它转换为整数对我有用:
int(sub_df.iloc[0])