我构造了一个条件,从我的数据帧中提取一行:

d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]

现在我想从一个特定的列中取一个值:

val = d2['col_name']

但结果是,我得到的数据帧只包含一行和一列(即一个单元格)。这不是我需要的。我需要一个值(一个浮点数)。在熊猫身上怎么做呢?


当前回答

使用.item()将返回一个标量(而不是Series),并且它仅在选中单个元素时有效。它比.values[0]安全得多,后者将返回第一个元素,而不管选择了多少个元素。

>>> df = pd.DataFrame({'a': [1,2,2], 'b': [4,5,6]})
>>> df[df['a'] == 1]['a']  # Returns a Series
0    1
Name: a, dtype: int64
>>> df[df['a'] == 1]['a'].item()
1
>>> df2 = df[df['a'] == 2]
>>> df2['b']
1    5
2    6
Name: b, dtype: int64
>>> df2['b'].values[0]
5
>>> df2['b'].item()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/lib/python3/dist-packages/pandas/core/base.py", line 331, in item
    raise ValueError("can only convert an array of size 1 to a Python scalar")
ValueError: can only convert an array of size 1 to a Python scalar

其他回答

df_gdp.columns

Index([u'Country', u'Country Code', u'Indicator Name', u'Indicator Code', u'1960', u'1961', u'1962', u'1963', u'1964', u'1965', u'1966', u'1967', u'1968', u'1969', u'1970', u'1971', u'1972', u'1973', u'1974', u'1975', u'1976', u'1977', u'1978', u'1979', u'1980', u'1981', u'1982', u'1983', u'1984', u'1985', u'1986', u'1987', u'1988', u'1989', u'1990', u'1991', u'1992', u'1993', u'1994', u'1995', u'1996', u'1997', u'1998', u'1999', u'2000', u'2001', u'2002', u'2003', u'2004', u'2005', u'2006', u'2007', u'2008', u'2009', u'2010', u'2011', u'2012', u'2013', u'2014', u'2015', u'2016'], dtype='object')

df_gdp[df_gdp["Country Code"] == "USA"]["1996"].values[0]

8100000000000.0

你可以把你的1x1数据帧转换成一个NumPy数组,然后访问该数组的第一个也是唯一的值:

val = d2['col_name'].values[0]

我需要一个单元格的值,按列名和索引名选择。 这个解决方案对我很有效:

original_conversion_frequency.loc [1:] . values [0]

这些是标量的快速访问方法:

In [15]: df = pandas.DataFrame(numpy.random.randn(5, 3), columns=list('ABC'))

In [16]: df
Out[16]:
          A         B         C
0 -0.074172 -0.090626  0.038272
1 -0.128545  0.762088 -0.714816
2  0.201498 -0.734963  0.558397
3  1.563307 -1.186415  0.848246
4  0.205171  0.962514  0.037709

In [17]: df.iat[0, 0]
Out[17]: -0.074171888537611502

In [18]: df.at[0, 'A']
Out[18]: -0.074171888537611502

在以后的版本中,你可以简单地这样做来修复它:

val = float(d2['col_name'].iloc[0])