不管我们喜欢与否,我们开发人员中的许多人(如果不是大多数的话)都经常使用数据库,或者有一天可能不得不使用数据库。考虑到大量的误用和滥用,以及每天出现的大量与数据库相关的问题,公平地说,有一些概念是开发人员应该知道的——即使他们今天不设计或使用数据库。
关于数据库,开发人员和其他软件专业人员应该知道的一个重要概念是什么?
不管我们喜欢与否,我们开发人员中的许多人(如果不是大多数的话)都经常使用数据库,或者有一天可能不得不使用数据库。考虑到大量的误用和滥用,以及每天出现的大量与数据库相关的问题,公平地说,有一些概念是开发人员应该知道的——即使他们今天不设计或使用数据库。
关于数据库,开发人员和其他软件专业人员应该知道的一个重要概念是什么?
当前回答
对于一个经常使用数据库(每天或几乎每天编写/维护查询)的中间派专业开发人员,我认为期望应该与任何其他领域相同:你在大学里写过一个。
每个c++极客在大学里都写过一个字符串类。每个图形狂人在大学里都写过一个光线追踪器。每个网络极客在大学里都写过交互式网站(通常在我们有“web框架”之前)。每个硬件书呆子(甚至软件书呆子)在大学里都做过CPU。大学里每个内科医生都解剖过一整具尸体,即使她今天只是给我量血压,告诉我胆固醇太高。为什么数据库会有所不同呢?
不幸的是,由于某种原因,他们今天看起来确实不一样了。人们希望。net程序员知道字符串在C语言中是如何工作的,但是RDBMS的内部结构不应该太关心你。
仅仅通过阅读,甚至从上到下都不可能达到同样的理解水平。但是,如果您从底层开始并理解每个部分,那么就相对容易找出数据库的细节。甚至是许多数据库极客似乎无法理解的事情,比如何时使用非关系数据库。
也许这有点严格,特别是如果你在大学里没有学习计算机科学。我会把它调低一些:你今天完全可以从头开始写一个。我不关心你是否知道PostgreSQL查询优化器的工作原理,但如果你知道足够多的知识自己编写一个,它可能不会与他们所做的有太大的不同。你知道,写一个基本的公式并不难。
其他回答
每个开发人员都应该知道这是错误的:“分析数据库操作与分析代码完全不同。”
在传统意义上有一个明确的Big-O。当你做一个EXPLAIN PLAN(或等效)时,你看到的是算法。有些算法涉及嵌套循环,并且是O(n ^ 2)。其他算法涉及到b树查找,并且是O(n log n)。
这是非常非常严重的。这是理解为什么索引很重要的关键。这对于理解速度-标准化-非标准化之间的权衡至关重要。这对于理解为什么数据仓库使用星型模式是非常重要的,而星型模式并没有对事务更新进行规范化。
如果您不清楚所使用的算法,请执行以下操作。停止。解释查询执行计划。相应调整指标。
同样,结论是:索引越多越好。
有时,专注于一个操作的索引会降低其他操作的速度。根据这两个操作的比例,添加一个索引可能有良好的效果,也可能没有整体影响,或者对整体性能不利。
不要依赖于SQL查询返回的行顺序。
好问题。以下是一些想法,排名不分先后:
Normalization, to at least the second normal form, is essential. Referential integrity is also essential, with proper cascading delete and update considerations. Good and proper use of check constraints. Let the database do as much work as possible. Don't scatter business logic in both the database and middle tier code. Pick one or the other, preferably in middle tier code. Decide on a consistent approach for primary keys and clustered keys. Don't over index. Choose your indexes wisely. Consistent table and column naming. Pick a standard and stick to it. Limit the number of columns in the database that will accept null values. Don't get carried away with triggers. They have their use but can complicate things in a hurry. Be careful with UDFs. They are great but can cause performance problems when you're not aware how often they might get called in a query. Get Celko's book on database design. The man is arrogant but knows his stuff.
根据我使用关系数据库的经验,每个开发人员都应该知道:
—不同的数据类型:
为正确的工作使用正确的类型将使您的DB设计更健壮,查询更快,生活更轻松。
—了解1xM和MxM:
这是关系数据库的基本功能。您需要理解一对多和多对多关系,并在适当的时候应用它们。
“K.I.S.S.”原则也适用于DB
简单总是最好的。如果你已经学习了数据库是如何工作的,你将避免不必要的复杂性,这将导致维护和速度问题。
——指数:
光知道它们是什么是不够的。你需要知道什么时候使用,什么时候不使用。
另外:
布尔代数是你的朋友 图像:不要将它们存储在DB上。不要问为什么。 用SELECT测试DELETE
关于数据库,开发人员应该知道的第一件事是:数据库是用来干什么的?不是它们如何工作,也不是如何构建它们,甚至不是如何编写代码来检索或更新数据库中的数据。但是它们有什么用呢?
不幸的是,这个问题的答案是一个移动的目标。在数据库的鼎盛时期,20世纪70年代到90年代初,数据库是为了共享数据。如果你正在使用一个数据库,而你没有共享数据,那么你要么是在参与一个学术项目,要么就是在浪费资源,包括你自己。建立一个数据库和驯服一个DBMS是如此巨大的任务,就数据被多次利用而言,回报必须与投资相匹配。
Over the last 15 years, databases have come to be used for storing the persistent data associated with just one application. Building a database for MySQL, or Access, or SQL Server has become so routine that databases have become almost a routine part of an ordinary application. Sometimes, that initial limited mission gets pushed upward by mission creep, as the real value of the data becomes apparent. Unfortunately, databases that were designed with a single purpose in mind often fail dramatically when they begin to be pushed into a role that's enterprise wide and mission critical.
关于数据库,开发人员需要了解的第二件事是整个以数据为中心的视图。以数据为中心的世界观不同于以流程为中心的世界观,这是大多数开发人员所学过的最不同的观点。与这个差距相比,结构化编程和面向对象编程之间的差距相对较小。
开发人员需要学习的第三件事是数据建模,包括概念数据建模、逻辑数据建模和物理数据建模。
概念数据建模实际上是从以数据为中心的角度进行需求分析。
逻辑数据建模通常是将特定的数据模型应用于概念数据建模中发现的需求。关系模型的使用比任何其他特定模型都要多,开发人员肯定需要学习关系模型。为一个重要的需求设计一个强大且相关的关系模型并不是一项简单的任务。如果误解了关系模型,就无法构建良好的SQL表。
物理数据建模通常是特定于DBMS的,不需要了解太多细节,除非开发人员同时也是数据库构建者或DBA。开发人员需要了解的是,物理数据库设计可以在多大程度上与逻辑数据库设计分离,以及仅通过调整物理设计就可以在多大程度上生成高速数据库。
开发人员需要了解的下一件事是,虽然速度(性能)很重要,但其他衡量设计好坏的指标更重要,比如修改和扩展数据库范围的能力,或者编程的简单性。
最后,任何与数据库打交道的人都需要明白,数据的价值往往比捕获数据的系统更持久。
唷!