我需要在一个图表中绘制一个显示计数的柱状图和一个显示率的折线图,我可以分别做这两个,但当我把它们放在一起时,我的第一层(即geom_bar)的比例被第二层(即geom_line)重叠。

我可以将geom_line的轴向右移动吗?


当前回答

您可以创建一个缩放因子,应用于第二个geom和右y轴。这是从塞巴斯蒂安的解推导出来的。

library(ggplot2)

scaleFactor <- max(mtcars$cyl) / max(mtcars$hp)

ggplot(mtcars, aes(x=disp)) +
  geom_smooth(aes(y=cyl), method="loess", col="blue") +
  geom_smooth(aes(y=hp * scaleFactor), method="loess", col="red") +
  scale_y_continuous(name="cyl", sec.axis=sec_axis(~./scaleFactor, name="hp")) +
  theme(
    axis.title.y.left=element_text(color="blue"),
    axis.text.y.left=element_text(color="blue"),
    axis.title.y.right=element_text(color="red"),
    axis.text.y.right=element_text(color="red")
  )

注意:使用ggplot2 v3.0.0

其他回答

这在ggplot2中是不可能的,因为我认为具有单独y尺度的图(不是相互转换的y尺度)从根本上是有缺陷的。一些问题:

The are not invertible: given a point on the plot space, you can not uniquely map it back to a point in the data space. They are relatively hard to read correctly compared to other options. See A Study on Dual-Scale Data Charts by Petra Isenberg, Anastasia Bezerianos, Pierre Dragicevic, and Jean-Daniel Fekete for details. They are easily manipulated to mislead: there is no unique way to specify the relative scales of the axes, leaving them open to manipulation. Two examples from the Junkcharts blog: one, two They are arbitrary: why have only 2 scales, not 3, 4 or ten?

你也可能想要阅读Stephen Few关于双缩放轴在图形中的主题的冗长讨论,它们是最好的解决方案吗?

根据上面的答案和一些微调(无论它有什么价值),这里有一种通过sec_axis实现两个尺度的方法:

假设有一个简单的(完全虚构的)数据集dt:在五天的时间里,它追踪了被打断的次数VS工作效率:

        when numinter prod
1 2018-03-20        1 0.95
2 2018-03-21        5 0.50
3 2018-03-23        4 0.70
4 2018-03-24        3 0.75
5 2018-03-25        4 0.60

(两列的范围相差大约5倍)。

下面的代码将画出它们占用整个y轴的两个级数:

ggplot() + 
  geom_bar(mapping = aes(x = dt$when, y = dt$numinter), stat = "identity", fill = "grey") +
  geom_line(mapping = aes(x = dt$when, y = dt$prod*5), size = 2, color = "blue") + 
  scale_x_date(name = "Day", labels = NULL) +
  scale_y_continuous(name = "Interruptions/day", 
    sec.axis = sec_axis(~./5, name = "Productivity % of best", 
      labels = function(b) { paste0(round(b * 100, 0), "%")})) + 
  theme(
      axis.title.y = element_text(color = "grey"),
      axis.title.y.right = element_text(color = "blue"))

下面是结果(上面的代码+一些颜色调整):

重点(除了在指定y_scale时使用sec_axis之外)是在指定系列时将第二个数据系列的每个值与5相乘。为了在sec_axis定义中获得正确的标签,它需要除以5(并格式化)。因此,上述代码中的关键部分实际上是geom_line和~中的*5。sec_axis中的/5(一个除当前值的公式。5)。

相比之下(我不想在这里判断方法),这是两个图表叠加在一起的样子:

你可以自己判断哪一个能更好地传递信息(“不要打扰别人工作!”)。我想这是一个公平的决定方式。

这两个图像的完整代码(实际上并没有比上面更多,只是完成并准备运行)在这里:https://gist.github.com/sebastianrothbucher/de847063f32fdff02c83b75f59c36a7d更详细的解释在这里:https://sebastianrothbucher.github.io/datascience/r/visualization/ggplot/2018/03/24/two-scales-ggplot-r.html

可以对变量使用facet_wrap(~ variable, ncol=)来创建一个新的比较。它们不在同一个轴上,但很相似。

您可以创建一个缩放因子,应用于第二个geom和右y轴。这是从塞巴斯蒂安的解推导出来的。

library(ggplot2)

scaleFactor <- max(mtcars$cyl) / max(mtcars$hp)

ggplot(mtcars, aes(x=disp)) +
  geom_smooth(aes(y=cyl), method="loess", col="blue") +
  geom_smooth(aes(y=hp * scaleFactor), method="loess", col="red") +
  scale_y_continuous(name="cyl", sec.axis=sec_axis(~./scaleFactor, name="hp")) +
  theme(
    axis.title.y.left=element_text(color="blue"),
    axis.text.y.left=element_text(color="blue"),
    axis.title.y.right=element_text(color="red"),
    axis.text.y.right=element_text(color="red")
  )

注意:使用ggplot2 v3.0.0

常见的用例有双y轴,例如,显示每月温度和降水的气体图。这里是一个简单的解决方案,从威震天的解决方案中推广,允许你设置变量的下限为零:

示例数据:

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
  )

将以下两个值设置为接近数据限制的值(您可以使用这些值来调整图形的位置;坐标轴仍然是正确的):

ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature

下面根据这些极限进行必要的计算,并制作出图本身:

b <- diff(ylim.prim)/diff(ylim.sec)
a <- ylim.prim[1] - b*ylim.sec[1]) # there was a bug here

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

如果你想确保红线对应右边的y轴,你可以在代码中添加一个主题句:

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  theme(axis.line.y.right = element_line(color = "red"), 
        axis.ticks.y.right = element_line(color = "red"),
        axis.text.y.right = element_text(color = "red"), 
        axis.title.y.right = element_text(color = "red")
        ) +
  ggtitle("Climatogram for Oslo (1961-1990)")

右轴的颜色: