float(nan')表示nan(不是数字)。但我该如何检查呢?


当前回答

如何从混合数据类型列表中删除NaN(float)项

如果在可迭代的中有混合类型,这里有一个不使用numpy的解决方案:

from math import isnan

Z = ['a','b', float('NaN'), 'd', float('1.1024')]

[x for x in Z if not (
                      type(x) == float # let's drop all float values…
                      and isnan(x) # … but only if they are nan
                      )]
['a', 'b', 'd', 1.1024]

短路求值意味着不会对非“float”类型的值调用isnan,因为False和(…)很快求值为False,而无需对右侧求值。

其他回答

如何从混合数据类型列表中删除NaN(float)项

如果在可迭代的中有混合类型,这里有一个不使用numpy的解决方案:

from math import isnan

Z = ['a','b', float('NaN'), 'd', float('1.1024')]

[x for x in Z if not (
                      type(x) == float # let's drop all float values…
                      and isnan(x) # … but only if they are nan
                      )]
['a', 'b', 'd', 1.1024]

短路求值意味着不会对非“float”类型的值调用isnan,因为False和(…)很快求值为False,而无需对右侧求值。

使用math.isnan:

>>> import math
>>> x = float('nan')
>>> math.isnan(x)
True

对于panda中的字符串,请使用pd.isnull:

if not pd.isnull(atext):
  for word in nltk.word_tokenize(atext):

NLTK的特征提取功能

def act_features(atext):
features = {}
if not pd.isnull(atext):
  for word in nltk.word_tokenize(atext):
    if word not in default_stopwords:
      features['cont({})'.format(word.lower())]=True
return features

事实上我刚碰到这个,但对我来说,它是在检查nan、-inf或inf

if float('-inf') < float(num) < float('inf'):

这对于数字是正确的,对于nan和inf都是错误的,对于字符串或其他类型(这可能是一件好事)会引发异常。此外,这不需要导入任何库,如math或numpy(numpy非常大,它的大小是任何编译应用程序的两倍)。

math.isnan()

或将数字与自身进行比较。NaN总是!=NaN,否则(例如,如果是数字),比较应成功。