float(nan')表示nan(不是数字)。但我该如何检查呢?


当前回答

对于panda中的字符串,请使用pd.isnull:

if not pd.isnull(atext):
  for word in nltk.word_tokenize(atext):

NLTK的特征提取功能

def act_features(atext):
features = {}
if not pd.isnull(atext):
  for word in nltk.word_tokenize(atext):
    if word not in default_stopwords:
      features['cont({})'.format(word.lower())]=True
return features

其他回答

在Python 3.6中,检查字符串值x math.isnan(x)和np.issan(x)会引发错误。所以我无法检查给定值是否为NaN,如果我事先不知道它是一个数字。以下内容似乎解决了这个问题

if str(x)=='nan' and type(x)!='str':
    print ('NaN')
else:
    print ('non NaN')

如何从混合数据类型列表中删除NaN(float)项

如果在可迭代的中有混合类型,这里有一个不使用numpy的解决方案:

from math import isnan

Z = ['a','b', float('NaN'), 'd', float('1.1024')]

[x for x in Z if not (
                      type(x) == float # let's drop all float values…
                      and isnan(x) # … but only if they are nan
                      )]
['a', 'b', 'd', 1.1024]

短路求值意味着不会对非“float”类型的值调用isnan,因为False和(…)很快求值为False,而无需对右侧求值。

math.isnan()

或将数字与自身进行比较。NaN总是!=NaN,否则(例如,如果是数字),比较应成功。

当python<2.6时

def isNaN(x):
    return str(float(x)).lower() == 'nan'

这适用于Solaris 5.9机箱上的python 2.5.1和Ubuntu 10上的python 2.6.5

这里有三种方法可以测试变量是否为“NaN”。

import pandas as pd
import numpy as np
import math

# For single variable all three libraries return single boolean
x1 = float("nan")

print(f"It's pd.isna: {pd.isna(x1)}")
print(f"It's np.isnan: {np.isnan(x1)}}")
print(f"It's math.isnan: {math.isnan(x1)}}")

输出

It's pd.isna: True
It's np.isnan: True
It's math.isnan: True