float(nan')表示nan(不是数字)。但我该如何检查呢?
当前回答
下面是一个答案:
符合IEEE 754标准的NaN实现例如:python的NaN:float(NaN'),numpy.NaN。。。任何其他对象:string或其他任何对象(遇到异常时不会引发异常)
按照标准实现的NaN是唯一一个与自身的不平等比较应返回True的值:
def is_nan(x):
return (x != x)
还有一些例子:
import numpy as np
values = [float('nan'), np.nan, 55, "string", lambda x : x]
for value in values:
print(f"{repr(value):<8} : {is_nan(value)}")
输出:
nan : True
nan : True
55 : False
'string' : False
<function <lambda> at 0x000000000927BF28> : False
其他回答
另一种方法是,如果你坚持低于2.6,你没有numpy,也没有IEEE 754支持:
def isNaN(x):
return str(x) == str(1e400*0)
我正在从一个web服务接收数据,该服务将NaN作为字符串“NaN”发送。但我的数据中也可能有其他类型的字符串,所以简单的float(value)可能会引发异常。我使用了接受答案的以下变体:
def isnan(value):
try:
import math
return math.isnan(float(value))
except:
return False
要求:
isnan('hello') == False
isnan('NaN') == True
isnan(100) == False
isnan(float('nan')) = True
用于浮球类型
>>> import pandas as pd
>>> value = float(nan)
>>> type(value)
>>> <class 'float'>
>>> pd.isnull(value)
True
>>>
>>> value = 'nan'
>>> type(value)
>>> <class 'str'>
>>> pd.isnull(value)
False
比较pd.isna、math.isnan和np.isnan及其处理不同类型对象的灵活性。
下表显示了是否可以使用给定方法检查对象类型:
+------------+-----+---------+------+--------+------+
| Method | NaN | numeric | None | string | list |
+------------+-----+---------+------+--------+------+
| pd.isna | yes | yes | yes | yes | yes |
| math.isnan | yes | yes | no | no | no |
| np.isnan | yes | yes | no | no | yes | <-- # will error on mixed type list
+------------+-----+---------+------+--------+------+
pd.isna文件
检查不同类型缺失值的最灵活方法。
所有答案都没有涵盖pd.isna的灵活性。虽然math.isnan和np.isnan将为NaN值返回True,但您无法检查None或字符串等不同类型的对象。这两个方法都会返回错误,因此检查混合类型的列表会很麻烦。而pd.isna是灵活的,它将为不同类型返回正确的布尔值:
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: missing_values = [3, None, np.NaN, pd.NA, pd.NaT, '10']
In [4]: pd.isna(missing_values)
Out[4]: array([False, True, True, True, True, False])
在Python 3.6中,检查字符串值x math.isnan(x)和np.issan(x)会引发错误。所以我无法检查给定值是否为NaN,如果我事先不知道它是一个数字。以下内容似乎解决了这个问题
if str(x)=='nan' and type(x)!='str':
print ('NaN')
else:
print ('non NaN')