我想从目录中读取几个CSV文件到熊猫,并将它们连接到一个大的DataFrame。不过我还没弄明白。以下是我目前所掌握的:

import glob
import pandas as pd

# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

dfs = []
for filename in filenames:
    dfs.append(pd.read_csv(filename))

# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)

我想我在for循环中需要一些帮助?


当前回答

import os

os.system("awk '(NR == 1) || (FNR > 1)' file*.csv > merged.csv")

其中NR和FNR表示正在处理的行号。

FNR是每个文件中的当前行。

NR == 1包含第一个文件的第一行(头文件),而FNR > 1跳过每个后续文件的第一行。

其他回答

基于希德的好答案。

识别列缺失或未对齐的问题

在连接之前,您可以将CSV文件加载到一个中间字典中,该字典根据文件名(以dict_of_df['filename.csv']的形式)访问每个数据集。这样的字典可以帮助您识别异构数据格式的问题,例如当列名没有对齐时。

导入模块并定位文件路径:

import os
import glob
import pandas
from collections import OrderedDict
path =r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")

注意:OrderedDict不是必需的,但它将保持文件的顺序,这可能对分析有用。

加载CSV文件到字典中。然后连接:

dict_of_df = OrderedDict((f, pandas.read_csv(f)) for f in filenames)
pandas.concat(dict_of_df, sort=True)

键为文件名称f,值为CSV文件的数据帧内容。

除了使用f作为字典键,你还可以使用os.path.basename(f)或其他os.path.basename(f)。方法将字典中键的大小减少到仅相关的较小部分。

import glob
import os
import pandas as pd   
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "my_files*.csv"))))

这是如何使用协作实验室谷歌驱动器:

import pandas as pd
import glob

path = r'/content/drive/My Drive/data/actual/comments_only' # Use your path
all_files = glob.glob(path + "/*.csv")

li = []

for filename in all_files:
    df = pd.read_csv(filename, index_col=None, header=0)
    li.append(df)

frame = pd.concat(li, axis=0, ignore_index=True,sort=True)
frame.to_csv('/content/drive/onefile.csv')

所有可用的.read_方法参见pandas: IO工具。

如果所有CSV文件都有相同的列,请尝试以下代码。

我添加了header=0,这样在读取CSV文件的第一行之后,就可以将它赋值为列名。

import pandas as pd
import glob
import os

path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path , "/*.csv"))

li = []

for filename in all_files:
    df = pd.read_csv(filename, index_col=None, header=0)
    li.append(df)

frame = pd.concat(li, axis=0, ignore_index=True)

或者,归属于Sid的评论。

all_files = glob.glob(os.path.join(path, "*.csv"))

df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)

通常需要标识每个数据样本,这可以通过向数据框架添加一个新列来实现。 本例将使用标准库中的Pathlib。它将路径视为具有方法的对象,而不是要切片的字符串。

导入和设置

from pathlib import Path
import pandas as pd
import numpy as np

path = r'C:\DRO\DCL_rawdata_files'  # or unix / linux / mac path

# Get the files from the path provided in the OP
files = Path(path).glob('*.csv')  # .rglob to get subdirectories

选项1:

添加带有文件名的新列

dfs = list()
for f in files:
    data = pd.read_csv(f)
    # .stem is method for pathlib objects to get the filename w/o the extension
    data['file'] = f.stem
    dfs.append(data)

df = pd.concat(dfs, ignore_index=True)

选项2:

使用enumerate添加具有泛型名称的新列

dfs = list()
for i, f in enumerate(files):
    data = pd.read_csv(f)
    data['file'] = f'File {i}'
    dfs.append(data)

df = pd.concat(dfs, ignore_index=True)

选项3:

使用列表理解创建数据框架,然后使用np。重复此操作以添加新列。 [f' s {i}' for i in range(len(dfs))]创建一个字符串列表来命名每个数据帧。 [len(df) for df in dfs]创建一个长度列表 这个选项的归属归属于这个绘图答案。

# Read the files into dataframes
dfs = [pd.read_csv(f) for f in files]

# Combine the list of dataframes
df = pd.concat(dfs, ignore_index=True)

# Add a new column
df['Source'] = np.repeat([f'S{i}' for i in range(len(dfs))], [len(df) for df in dfs])

选项4:

一行代码使用.assign创建新列,并将其归属于来自C8H10N4O2的注释

df = pd.concat((pd.read_csv(f).assign(filename=f.stem) for f in files), ignore_index=True)

or

df = pd.concat((pd.read_csv(f).assign(Source=f'S{i}') for i, f in enumerate(files)), ignore_index=True)

可选择使用pathlib库(通常优先于os.path)。

该方法避免了重复使用pandas concat()/ apping()。

从熊猫文档中可以看到: 值得注意的是,concat()(因此append())会生成数据的完整副本,并且不断重用此函数会产生显著的性能影响。如果需要对多个数据集使用操作,请使用列表推导式。

import pandas as pd
from pathlib import Path

dir = Path("../relevant_directory")

df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)