我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

如果你正在寻找一个java脚本库,有一个javascript谷歌maps v3扩展的Polygon类,以检测是否有一个点驻留在它里面。

var polygon = new google.maps.Polygon([], "#000000", 1, 1, "#336699", 0.3);
var isWithinPolygon = polygon.containsLatLng(40, -90);

谷歌扩展Github

其他回答

这个问题的大多数答案并没有很好地处理所有的极端情况。以下是一些微妙的极端情况: 这是一个javascript版本,所有角落的情况都得到了很好的处理。

/** Get relationship between a point and a polygon using ray-casting algorithm
 * @param {{x:number, y:number}} P: point to check
 * @param {{x:number, y:number}[]} polygon: the polygon
 * @returns -1: outside, 0: on edge, 1: inside
 */
function relationPP(P, polygon) {
    const between = (p, a, b) => p >= a && p <= b || p <= a && p >= b
    let inside = false
    for (let i = polygon.length-1, j = 0; j < polygon.length; i = j, j++) {
        const A = polygon[i]
        const B = polygon[j]
        // corner cases
        if (P.x == A.x && P.y == A.y || P.x == B.x && P.y == B.y) return 0
        if (A.y == B.y && P.y == A.y && between(P.x, A.x, B.x)) return 0

        if (between(P.y, A.y, B.y)) { // if P inside the vertical range
            // filter out "ray pass vertex" problem by treating the line a little lower
            if (P.y == A.y && B.y >= A.y || P.y == B.y && A.y >= B.y) continue
            // calc cross product `PA X PB`, P lays on left side of AB if c > 0 
            const c = (A.x - P.x) * (B.y - P.y) - (B.x - P.x) * (A.y - P.y)
            if (c == 0) return 0
            if ((A.y < B.y) == (c > 0)) inside = !inside
        }
    }

    return inside? 1 : -1
}

对于检测多边形上的命中,我们需要测试两件事:

如果点在多边形区域内。(可通过Ray-Casting算法实现) 如果点在多边形边界上(可以用与在折线(线)上检测点相同的算法来完成)。

下面是nirg给出的答案的c#版本,它来自RPI教授。请注意,使用来自RPI源代码的代码需要归属。

在顶部添加了一个边界框复选。然而,正如James Brown所指出的,主代码几乎和边界框检查本身一样快,所以边界框检查实际上会减慢整体操作,因为您正在检查的大多数点都在边界框内。所以你可以让边界框签出,或者另一种选择是预先计算多边形的边界框,如果它们不经常改变形状的话。

public bool IsPointInPolygon( Point p, Point[] polygon )
{
    double minX = polygon[ 0 ].X;
    double maxX = polygon[ 0 ].X;
    double minY = polygon[ 0 ].Y;
    double maxY = polygon[ 0 ].Y;
    for ( int i = 1 ; i < polygon.Length ; i++ )
    {
        Point q = polygon[ i ];
        minX = Math.Min( q.X, minX );
        maxX = Math.Max( q.X, maxX );
        minY = Math.Min( q.Y, minY );
        maxY = Math.Max( q.Y, maxY );
    }

    if ( p.X < minX || p.X > maxX || p.Y < minY || p.Y > maxY )
    {
        return false;
    }

    // https://wrf.ecse.rpi.edu/Research/Short_Notes/pnpoly.html
    bool inside = false;
    for ( int i = 0, j = polygon.Length - 1 ; i < polygon.Length ; j = i++ )
    {
        if ( ( polygon[ i ].Y > p.Y ) != ( polygon[ j ].Y > p.Y ) &&
             p.X < ( polygon[ j ].X - polygon[ i ].X ) * ( p.Y - polygon[ i ].Y ) / ( polygon[ j ].Y - polygon[ i ].Y ) + polygon[ i ].X )
        {
            inside = !inside;
        }
    }

    return inside;
}

David Segond's answer is pretty much the standard general answer, and Richard T's is the most common optimization, though therre are some others. Other strong optimizations are based on less general solutions. For example if you are going to check the same polygon with lots of points, triangulating the polygon can speed things up hugely as there are a number of very fast TIN searching algorithms. Another is if the polygon and points are on a limited plane at low resolution, say a screen display, you can paint the polygon onto a memory mapped display buffer in a given colour, and check the color of a given pixel to see if it lies in the polygons.

像许多优化一样,这些优化是基于特定情况而不是一般情况,并且基于摊销时间而不是单次使用产生效益。

在这个领域工作,我发现约瑟夫·奥鲁克斯的《计算几何》在C' ISBN 0-521-44034-3是一个很大的帮助。

在Ray casting算法中处理以下特殊情况:

射线与多边形的一条边重叠。 点在多边形的内部,光线穿过多边形的顶点。 该点在多边形的外部,光线只接触到多边形的一个角。

检查确定一个点是否在一个复杂多边形内。本文提供了一种简单的解决方法,因此对于上述情况不需要特殊处理。