我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

如果你正在寻找一个java脚本库,有一个javascript谷歌maps v3扩展的Polygon类,以检测是否有一个点驻留在它里面。

var polygon = new google.maps.Polygon([], "#000000", 1, 1, "#336699", 0.3);
var isWithinPolygon = polygon.containsLatLng(40, -90);

谷歌扩展Github

其他回答

简单的解决方案是将多边形划分为三角形,并按这里解释的那样对三角形进行测试

如果你的多边形是凸多边形,可能有更好的方法。把这个多边形看作是无限条线的集合。每一行将空间一分为二。对于每一个点,很容易判断它是在直线的一边还是另一边。如果一个点在所有直线的同一侧,那么它在多边形内。

真的很喜欢Nirg发布的解决方案,由bobobobo编辑。我只是让它javascript友好,更容易读懂我的使用:

function insidePoly(poly, pointx, pointy) {
    var i, j;
    var inside = false;
    for (i = 0, j = poly.length - 1; i < poly.length; j = i++) {
        if(((poly[i].y > pointy) != (poly[j].y > pointy)) && (pointx < (poly[j].x-poly[i].x) * (pointy-poly[i].y) / (poly[j].y-poly[i].y) + poly[i].x) ) inside = !inside;
    }
    return inside;
}

Like David Segonds' answer suggests I use an approach of angle summation derived from my concave polygon drawing algorithm. It relies of adding up the approximate angles of subtriangles around the point to obtain a weight. A weight around 1.0 means the point is inside the triangle, a weight around 0.0 means outside, a weight around -1.0 is what happens when inside the polygon but in reverse order (like with one of the halves of a bowtie-shaped tetragon) and a weight of NAN if exactly on an edge. The reason it's not slow is that angles don't need to be estimated accurately at all. Holes can be handled by treating them as separate polygons and subtracting the weights.

typedef struct { double x, y; } xy_t;

xy_t sub_xy(xy_t a, xy_t b)
{
    a.x -= b.x;
    a.y -= b.y;
    return a;
}

double calc_sharp_subtriangle_pixel_weight(xy_t p0, xy_t p1)
{
    xy_t rot, r0, r1;
    double weight;

    // Rotate points (unnormalised)
    rot = sub_xy(p1, p0);
    r0.x = rot.x*p0.y - rot.y*p0.x;
    r0.y = rot.x*p0.x + rot.y*p0.y;
    r1.y = rot.x*p1.x + rot.y*p1.y;

    // Calc weight
    weight = subtriangle_angle_approx(r1.y, r0.x) - subtriangle_angle_approx(r0.y, r0.x);

    return weight;
}

double calc_sharp_polygon_pixel_weight(xy_t p, xy_t *corner, int corner_count)
{
    int i;
    xy_t p0, p1;
    double weight = 0.;

    p0 = sub_xy(corner[corner_count-1], p);
    for (i=0; i < corner_count; i++)
    {
        // Transform corner coordinates
        p1 = sub_xy(corner[i], p);

        // Calculate weight for each subtriangle
        weight += calc_sharp_subtriangle_pixel_weight(p0, p1);
        p0 = p1;
    }

    return weight;
}

因此,对于多边形的每一段,都形成一个子三角形,并计算点,然后旋转每个子三角形以计算其近似角度并添加到权重。

调用subtriangle_angle_approx(y, x)可以替换为atan2(y, x) / (2.*pi),但是一个非常粗略的近似值就足够精确了:

double subtriangle_angle_approx(double y, double x)
{
    double angle, d;
    int obtuse;

    if (x == 0.)
        return NAN;

    obtuse = fabs(y) > fabs(x);
    if (obtuse)
        swap_double(&y, &x);

    // Core of the approximation, a very loosely approximate atan(y/x) / (2.*pi) over ]-1 , 1[
    d = y / x;
    angle = 0.13185 * d;

    if (obtuse)
        angle = sign(d)*0.25 - angle;

    return angle;
}

Java版本:

public class Geocode {
    private float latitude;
    private float longitude;

    public Geocode() {
    }

    public Geocode(float latitude, float longitude) {
        this.latitude = latitude;
        this.longitude = longitude;
    }

    public float getLatitude() {
        return latitude;
    }

    public void setLatitude(float latitude) {
        this.latitude = latitude;
    }

    public float getLongitude() {
        return longitude;
    }

    public void setLongitude(float longitude) {
        this.longitude = longitude;
    }
}

public class GeoPolygon {
    private ArrayList<Geocode> points;

    public GeoPolygon() {
        this.points = new ArrayList<Geocode>();
    }

    public GeoPolygon(ArrayList<Geocode> points) {
        this.points = points;
    }

    public GeoPolygon add(Geocode geo) {
        points.add(geo);
        return this;
    }

    public boolean inside(Geocode geo) {
        int i, j;
        boolean c = false;
        for (i = 0, j = points.size() - 1; i < points.size(); j = i++) {
            if (((points.get(i).getLongitude() > geo.getLongitude()) != (points.get(j).getLongitude() > geo.getLongitude())) &&
                    (geo.getLatitude() < (points.get(j).getLatitude() - points.get(i).getLatitude()) * (geo.getLongitude() - points.get(i).getLongitude()) / (points.get(j).getLongitude() - points.get(i).getLongitude()) + points.get(i).getLatitude()))
                c = !c;
        }
        return c;
    }

}

nirg回答的Swift版本:

extension CGPoint {
    func isInsidePolygon(vertices: [CGPoint]) -> Bool {
        guard !vertices.isEmpty else { return false }
        var j = vertices.last!, c = false
        for i in vertices {
            let a = (i.y > y) != (j.y > y)
            let b = (x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)
            if a && b { c = !c }
            j = i
        }
        return c
    }
}