我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

如果你正在寻找一个java脚本库,有一个javascript谷歌maps v3扩展的Polygon类,以检测是否有一个点驻留在它里面。

var polygon = new google.maps.Polygon([], "#000000", 1, 1, "#336699", 0.3);
var isWithinPolygon = polygon.containsLatLng(40, -90);

谷歌扩展Github

其他回答

nirg回答的Swift版本:

extension CGPoint {
    func isInsidePolygon(vertices: [CGPoint]) -> Bool {
        guard !vertices.isEmpty else { return false }
        var j = vertices.last!, c = false
        for i in vertices {
            let a = (i.y > y) != (j.y > y)
            let b = (x < (j.x - i.x) * (y - i.y) / (j.y - i.y) + i.x)
            if a && b { c = !c }
            j = i
        }
        return c
    }
}

Like David Segonds' answer suggests I use an approach of angle summation derived from my concave polygon drawing algorithm. It relies of adding up the approximate angles of subtriangles around the point to obtain a weight. A weight around 1.0 means the point is inside the triangle, a weight around 0.0 means outside, a weight around -1.0 is what happens when inside the polygon but in reverse order (like with one of the halves of a bowtie-shaped tetragon) and a weight of NAN if exactly on an edge. The reason it's not slow is that angles don't need to be estimated accurately at all. Holes can be handled by treating them as separate polygons and subtracting the weights.

typedef struct { double x, y; } xy_t;

xy_t sub_xy(xy_t a, xy_t b)
{
    a.x -= b.x;
    a.y -= b.y;
    return a;
}

double calc_sharp_subtriangle_pixel_weight(xy_t p0, xy_t p1)
{
    xy_t rot, r0, r1;
    double weight;

    // Rotate points (unnormalised)
    rot = sub_xy(p1, p0);
    r0.x = rot.x*p0.y - rot.y*p0.x;
    r0.y = rot.x*p0.x + rot.y*p0.y;
    r1.y = rot.x*p1.x + rot.y*p1.y;

    // Calc weight
    weight = subtriangle_angle_approx(r1.y, r0.x) - subtriangle_angle_approx(r0.y, r0.x);

    return weight;
}

double calc_sharp_polygon_pixel_weight(xy_t p, xy_t *corner, int corner_count)
{
    int i;
    xy_t p0, p1;
    double weight = 0.;

    p0 = sub_xy(corner[corner_count-1], p);
    for (i=0; i < corner_count; i++)
    {
        // Transform corner coordinates
        p1 = sub_xy(corner[i], p);

        // Calculate weight for each subtriangle
        weight += calc_sharp_subtriangle_pixel_weight(p0, p1);
        p0 = p1;
    }

    return weight;
}

因此,对于多边形的每一段,都形成一个子三角形,并计算点,然后旋转每个子三角形以计算其近似角度并添加到权重。

调用subtriangle_angle_approx(y, x)可以替换为atan2(y, x) / (2.*pi),但是一个非常粗略的近似值就足够精确了:

double subtriangle_angle_approx(double y, double x)
{
    double angle, d;
    int obtuse;

    if (x == 0.)
        return NAN;

    obtuse = fabs(y) > fabs(x);
    if (obtuse)
        swap_double(&y, &x);

    // Core of the approximation, a very loosely approximate atan(y/x) / (2.*pi) over ]-1 , 1[
    d = y / x;
    angle = 0.13185 * d;

    if (obtuse)
        angle = sign(d)*0.25 - angle;

    return angle;
}

令人惊讶的是之前没有人提出这个问题,但是对于需要数据库的实用主义者来说:MongoDB对Geo查询提供了出色的支持,包括这个查询。

你需要的是:

db.neighborhoods。findOne({geometry: {$geoIntersects: {$geometry: { type: "Point",坐标:["经度","纬度"]}}} })

communities是存储一个或多个标准GeoJson格式多边形的集合。如果查询返回null,则表示不相交,否则为。

这里有详细的记录: https://docs.mongodb.com/manual/tutorial/geospatial-tutorial/

在330个不规则多边形网格中,超过6000个点分类的性能不到一分钟,没有任何优化,包括用各自的多边形更新文档的时间。

没有什么比归纳定义问题更美好的了。为了完整起见,你在序言中有一个版本,它可能也澄清了光线投射背后的思想:

基于仿真的简化算法在http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html

一些helper谓词:

exor(A,B):- \+A,B;A,\+B.
in_range(Coordinate,CA,CB) :- exor((CA>Coordinate),(CB>Coordinate)).

inside(false).
inside(_,[_|[]]).
inside(X:Y, [X1:Y1,X2:Y2|R]) :- in_range(Y,Y1,Y2), X > ( ((X2-X1)*(Y-Y1))/(Y2-Y1) +      X1),toggle_ray, inside(X:Y, [X2:Y2|R]); inside(X:Y, [X2:Y2|R]).

get_line(_,_,[]).
get_line([XA:YA,XB:YB],[X1:Y1,X2:Y2|R]):- [XA:YA,XB:YB]=[X1:Y1,X2:Y2]; get_line([XA:YA,XB:YB],[X2:Y2|R]).

给定两点a和B的直线(直线(a,B))方程为:

                    (YB-YA)
           Y - YA = ------- * (X - XA) 
                    (XB-YB) 

It is important that the direction of rotation for the line is setted to clock-wise for boundaries and anti-clock-wise for holes. We are going to check whether the point (X,Y), i.e the tested point is at the left half-plane of our line (it is a matter of taste, it could also be the right side, but also the direction of boundaries lines has to be changed in that case), this is to project the ray from the point to the right (or left) and acknowledge the intersection with the line. We have chosen to project the ray in the horizontal direction (again it is a matter of taste, it could also be done in vertical with similar restrictions), so we have:

               (XB-XA)
           X < ------- * (Y - YA) + XA
               (YB-YA) 

Now we need to know if the point is at the left (or right) side of the line segment only, not the entire plane, so we need to restrict the search only to this segment, but this is easy since to be inside the segment only one point in the line can be higher than Y in the vertical axis. As this is a stronger restriction it needs to be the first to check, so we take first only those lines meeting this requirement and then check its possition. By the Jordan Curve theorem any ray projected to a polygon must intersect at an even number of lines. So we are done, we will throw the ray to the right and then everytime it intersects a line, toggle its state. However in our implementation we are goint to check the lenght of the bag of solutions meeting the given restrictions and decide the innership upon it. for each line in the polygon this have to be done.

is_left_half_plane(_,[],[],_).
is_left_half_plane(X:Y,[XA:YA,XB:YB], [[X1:Y1,X2:Y2]|R], Test) :- [XA:YA, XB:YB] =  [X1:Y1, X2:Y2], call(Test, X , (((XB - XA) * (Y - YA)) / (YB - YA) + XA)); 
                                                        is_left_half_plane(X:Y, [XA:YA, XB:YB], R, Test).

in_y_range_at_poly(Y,[XA:YA,XB:YB],Polygon) :- get_line([XA:YA,XB:YB],Polygon),  in_range(Y,YA,YB).
all_in_range(Coordinate,Polygon,Lines) :- aggregate(bag(Line),    in_y_range_at_poly(Coordinate,Line,Polygon), Lines).

traverses_ray(X:Y, Lines, Count) :- aggregate(bag(Line), is_left_half_plane(X:Y, Line, Lines, <), IntersectingLines), length(IntersectingLines, Count).

% This is the entry point predicate
inside_poly(X:Y,Polygon,Answer) :- all_in_range(Y,Polygon,Lines), traverses_ray(X:Y, Lines, Count), (1 is mod(Count,2)->Answer=inside;Answer=outside).

如果你正在使用谷歌Map SDK,想要检查一个点是否在一个多边形内,你可以尝试使用GMSGeometryContainsLocation。效果很好!!它是这样运作的,

if GMSGeometryContainsLocation(point, polygon, true) {
    print("Inside this polygon.")
} else {
    print("outside this polygon")
}

这里是参考资料:https://developers.google.com/maps/documentation/ios-sdk/reference/group___geometry_utils#gaba958d3776d49213404af249419d0ffd