我试图创建一个快速的2D点内多边形算法,用于命中测试(例如多边形.contains(p:点))。对有效技术的建议将不胜感激。


当前回答

如果你正在寻找一个java脚本库,有一个javascript谷歌maps v3扩展的Polygon类,以检测是否有一个点驻留在它里面。

var polygon = new google.maps.Polygon([], "#000000", 1, 1, "#336699", 0.3);
var isWithinPolygon = polygon.containsLatLng(40, -90);

谷歌扩展Github

其他回答

在C语言的多边形测试中,有一个点没有使用光线投射。它可以用于重叠区域(自我交叉),请参阅use_holes参数。

/* math lib (defined below) */
static float dot_v2v2(const float a[2], const float b[2]);
static float angle_signed_v2v2(const float v1[2], const float v2[2]);
static void copy_v2_v2(float r[2], const float a[2]);

/* intersection function */
bool isect_point_poly_v2(const float pt[2], const float verts[][2], const unsigned int nr,
                         const bool use_holes)
{
    /* we do the angle rule, define that all added angles should be about zero or (2 * PI) */
    float angletot = 0.0;
    float fp1[2], fp2[2];
    unsigned int i;
    const float *p1, *p2;

    p1 = verts[nr - 1];

    /* first vector */
    fp1[0] = p1[0] - pt[0];
    fp1[1] = p1[1] - pt[1];

    for (i = 0; i < nr; i++) {
        p2 = verts[i];

        /* second vector */
        fp2[0] = p2[0] - pt[0];
        fp2[1] = p2[1] - pt[1];

        /* dot and angle and cross */
        angletot += angle_signed_v2v2(fp1, fp2);

        /* circulate */
        copy_v2_v2(fp1, fp2);
        p1 = p2;
    }

    angletot = fabsf(angletot);
    if (use_holes) {
        const float nested = floorf((angletot / (float)(M_PI * 2.0)) + 0.00001f);
        angletot -= nested * (float)(M_PI * 2.0);
        return (angletot > 4.0f) != ((int)nested % 2);
    }
    else {
        return (angletot > 4.0f);
    }
}

/* math lib */

static float dot_v2v2(const float a[2], const float b[2])
{
    return a[0] * b[0] + a[1] * b[1];
}

static float angle_signed_v2v2(const float v1[2], const float v2[2])
{
    const float perp_dot = (v1[1] * v2[0]) - (v1[0] * v2[1]);
    return atan2f(perp_dot, dot_v2v2(v1, v2));
}

static void copy_v2_v2(float r[2], const float a[2])
{
    r[0] = a[0];
    r[1] = a[1];
}

注意:这是一个不太理想的方法,因为它包含很多对atan2f的调用,但它可能会引起阅读这个线程的开发人员的兴趣(在我的测试中,它比使用线交方法慢23倍)。

简单的解决方案是将多边形划分为三角形,并按这里解释的那样对三角形进行测试

如果你的多边形是凸多边形,可能有更好的方法。把这个多边形看作是无限条线的集合。每一行将空间一分为二。对于每一个点,很容易判断它是在直线的一边还是另一边。如果一个点在所有直线的同一侧,那么它在多边形内。

下面是Rust版本的@nirg答案(Philipp Lenssen javascript版本) 我给出这个答案是因为我从这个网站得到了很多帮助,我翻译javascript版本rust作为一个练习,希望可以帮助一些人,最后一个原因是,在我的工作中,我会把这段代码翻译成一个wasm,以提高我的画布的性能,这是一个开始。我的英语很差……,请原谅我 `

pub struct Point {
    x: f32,
    y: f32,
}
pub fn point_is_in_poly(pt: Point, polygon: &Vec<Point>) -> bool {
    let mut is_inside = false;

    let max_x = polygon.iter().map(|pt| pt.x).reduce(f32::max).unwrap();
    let min_x = polygon.iter().map(|pt| pt.x).reduce(f32::min).unwrap();
    let max_y = polygon.iter().map(|pt| pt.y).reduce(f32::max).unwrap();
    let min_y = polygon.iter().map(|pt| pt.y).reduce(f32::min).unwrap();

    if pt.x < min_x || pt.x > max_x || pt.y < min_y || pt.y > max_y {
        return is_inside;
    }

    let len = polygon.len();
    let mut j = len - 1;

    for i in 0..len {
        let y_i_value = polygon[i].y > pt.y;
        let y_j_value = polygon[j].y > pt.y;
        let last_check = (polygon[j].x - polygon[i].x) * (pt.y - polygon[i].y)
            / (polygon[j].y - polygon[i].y)
            + polygon[i].x;
        if y_i_value != y_j_value && pt.x < last_check {
            is_inside = !is_inside;
        }
        j = i;
    }
    is_inside
}


let pt = Point {
    x: 1266.753,
    y: 97.655,
};
let polygon = vec![
    Point {
        x: 725.278,
        y: 203.586,
    },
    Point {
        x: 486.831,
        y: 441.931,
    },
    Point {
        x: 905.77,
        y: 445.241,
    },
    Point {
        x: 1026.649,
        y: 201.931,
    },
];
let pt1 = Point {
    x: 725.278,
    y: 203.586,
};
let pt2 = Point {
    x: 872.652,
    y: 321.103,
};
println!("{}", point_is_in_poly(pt, &polygon));// false
println!("{}", point_is_in_poly(pt1, &polygon)); // true
println!("{}", point_is_in_poly(pt2, &polygon));// true

`

这个问题的大多数答案并没有很好地处理所有的极端情况。以下是一些微妙的极端情况: 这是一个javascript版本,所有角落的情况都得到了很好的处理。

/** Get relationship between a point and a polygon using ray-casting algorithm
 * @param {{x:number, y:number}} P: point to check
 * @param {{x:number, y:number}[]} polygon: the polygon
 * @returns -1: outside, 0: on edge, 1: inside
 */
function relationPP(P, polygon) {
    const between = (p, a, b) => p >= a && p <= b || p <= a && p >= b
    let inside = false
    for (let i = polygon.length-1, j = 0; j < polygon.length; i = j, j++) {
        const A = polygon[i]
        const B = polygon[j]
        // corner cases
        if (P.x == A.x && P.y == A.y || P.x == B.x && P.y == B.y) return 0
        if (A.y == B.y && P.y == A.y && between(P.x, A.x, B.x)) return 0

        if (between(P.y, A.y, B.y)) { // if P inside the vertical range
            // filter out "ray pass vertex" problem by treating the line a little lower
            if (P.y == A.y && B.y >= A.y || P.y == B.y && A.y >= B.y) continue
            // calc cross product `PA X PB`, P lays on left side of AB if c > 0 
            const c = (A.x - P.x) * (B.y - P.y) - (B.x - P.x) * (A.y - P.y)
            if (c == 0) return 0
            if ((A.y < B.y) == (c > 0)) inside = !inside
        }
    }

    return inside? 1 : -1
}

这个问题很有趣。我有另一个可行的想法,不同于这篇文章的其他答案。其原理是利用角度之和来判断目标是在内部还是外部。也就是圈数。

设x为目标点。让数组[0,1,....N]是该区域的所有点。用一条线将目标点与每一个边界点连接起来。如果目标点在这个区域内。所有角的和是360度。如果不是,角度将小于360度。

参考这张图来对这个概念有一个基本的了解:

我的算法假设顺时针是正方向。这是一个潜在的输入:

[[-122.402015, 48.225216], [-117.032049, 48.999931], [-116.919132, 45.995175], [-124.079107, 46.267259], [-124.717175, 48.377557], [-122.92315, 47.047963], [-122.402015, 48.225216]]

下面是实现这个想法的python代码:

def isInside(self, border, target):
degree = 0
for i in range(len(border) - 1):
    a = border[i]
    b = border[i + 1]

    # calculate distance of vector
    A = getDistance(a[0], a[1], b[0], b[1]);
    B = getDistance(target[0], target[1], a[0], a[1])
    C = getDistance(target[0], target[1], b[0], b[1])

    # calculate direction of vector
    ta_x = a[0] - target[0]
    ta_y = a[1] - target[1]
    tb_x = b[0] - target[0]
    tb_y = b[1] - target[1]

    cross = tb_y * ta_x - tb_x * ta_y
    clockwise = cross < 0

    # calculate sum of angles
    if(clockwise):
        degree = degree + math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))
    else:
        degree = degree - math.degrees(math.acos((B * B + C * C - A * A) / (2.0 * B * C)))

if(abs(round(degree) - 360) <= 3):
    return True
return False