我要做一个柱状图,其中最大的柱状图离y轴最近,最短的柱状图离y轴最远。这有点像我的表格
Name Position
1 James Goalkeeper
2 Frank Goalkeeper
3 Jean Defense
4 Steve Defense
5 John Defense
6 Tim Striker
所以我试图建立一个条形图,根据位置显示球员的数量
p <- ggplot(theTable, aes(x = Position)) + geom_bar(binwidth = 1)
但是图表显示的是门将栏,然后是防守栏,最后是前锋栏。我希望图表的顺序是,防守条最靠近y轴,守门员条,最后是前锋条。
谢谢
如果不想使用ggplot2,还有一个ggpubr,它为ggbarplot函数提供了一个非常有用的参数。你可以对条形图进行排序。Val在“desc”和“asc”中是这样的:
library(dplyr)
library(ggpubr)
# desc
df %>%
count(Position) %>%
ggbarplot(x = "Position",
y = "n",
sort.val = "desc")
# asc
df %>%
count(Position) %>%
ggbarplot(x = "Position",
y = "n",
sort.val = "asc")
由reprex包于2022-08-14创建(v2.0.1)
如您所见,对条形进行排序非常简单。如果条形图是分组的,也可以这样做。查看上面的链接,获取一些有用的例子。
你只需要指定Position列为一个有序因子,其中级别是按它们的计数排序的:
theTable <- transform( theTable,
Position = ordered(Position, levels = names( sort(-table(Position)))))
(请注意,表(Position)产生了Position列的频率计数。)
然后,您的ggplot函数将以计数递减的顺序显示条形图。
我不知道在geom_bar中是否有一个选项可以在不显式地创建有序因子的情况下做到这一点。
由于我们只关注单个变量(“位置”)的分布,而不是两个变量之间的关系,那么直方图可能是更合适的图形。Ggplot有geom_histogram(),这使得它很容易:
ggplot(theTable, aes(x = Position)) + geom_histogram(stat="count")
使用geom_histogram ():
我认为geom_histogram()有点古怪,因为它对待连续数据和离散数据是不同的。
对于连续数据,可以只使用不带参数的geom_histogram()。
例如,如果我们添加一个数字向量“Score”……
Name Position Score
1 James Goalkeeper 10
2 Frank Goalkeeper 20
3 Jean Defense 10
4 Steve Defense 10
5 John Defense 20
6 Tim Striker 50
然后在“Score”变量上使用geom_histogram()…
ggplot(theTable, aes(x = Score)) + geom_histogram()
对于像“Position”这样的离散数据,我们必须指定一个由美学计算出来的统计数据,使用stat = "count"来给出条形高度的y值:
ggplot(theTable, aes(x = Position)) + geom_histogram(stat = "count")
注意:奇怪且令人困惑的是,你也可以使用stat = "count"来表示连续的数据,我认为它提供了一个更美观的图形。
ggplot(theTable, aes(x = Score)) + geom_histogram(stat = "count")
编辑:对DebanjanB的有用建议的扩展回答。
我认为已经提供的解决方案过于冗长。使用ggplot进行频率排序barplot的一种更简洁的方法是
ggplot(theTable, aes(x=reorder(Position, -table(Position)[Position]))) + geom_bar()
它类似于Alex Brown的建议,但更简短,并且不需要任何函数定义。
更新
我认为我的旧解决方案在当时是好的,但现在我宁愿使用forcats::fct_infreq,它是按频率排序因子级别:
require(forcats)
ggplot(theTable, aes(fct_infreq(Position))) + geom_bar()