我要做一个柱状图,其中最大的柱状图离y轴最近,最短的柱状图离y轴最远。这有点像我的表格

    Name   Position
1   James  Goalkeeper
2   Frank  Goalkeeper
3   Jean   Defense
4   Steve  Defense
5   John   Defense
6   Tim    Striker

所以我试图建立一个条形图,根据位置显示球员的数量

p <- ggplot(theTable, aes(x = Position)) + geom_bar(binwidth = 1)

但是图表显示的是门将栏,然后是防守栏,最后是前锋栏。我希望图表的顺序是,防守条最靠近y轴,守门员条,最后是前锋条。 谢谢


当前回答

library(ggplot2)
library(magrittr)

dd <- tibble::tribble(
    ~Name,    ~Position,
  "James", "Goalkeeper",
  "Frank", "Goalkeeper",
   "Jean",    "Defense",
   "John",    "Defense",
  "Steve",    "Defense",
    "Tim",    "Striker"
  )


dd %>% ggplot(aes(x = forcats::fct_infreq(Position))) + geom_bar()

于2022-08-30使用reprex v2.0.2创建

其他回答

我同意zach的观点,在dplyr内计数是最好的解决方案。我发现这是最短的版本:

dplyr::count(theTable, Position) %>%
          arrange(-n) %>%
          mutate(Position = factor(Position, Position)) %>%
          ggplot(aes(x=Position, y=n)) + geom_bar(stat="identity")

这也将比事先重新排序因子级别快得多,因为计数是在dplyr中完成的,而不是在ggplot或使用table中完成的。

你可以简单地使用下面的代码:

ggplot(yourdatasetname, aes(Position, fill = Name)) + 
     geom_bar(col = "black", size = 2)

如果图表列来自一个数值变量,如下面的数据框架所示,您可以使用一个更简单的解决方案:

ggplot(df, aes(x = reorder(Colors, -Qty, sum), y = Qty)) 
+ geom_bar(stat = "identity")  

排序变量(-Qty)前面的负号控制排序方向(升序/降序)

以下是一些用于测试的数据:

df <- data.frame(Colors = c("Green","Yellow","Blue","Red","Yellow","Blue"),  
                 Qty = c(7,4,5,1,3,6)
                )

**Sample data:**
  Colors Qty
1  Green   7
2 Yellow   4
3   Blue   5
4    Red   1
5 Yellow   3
6   Blue   6

当我发现这条线索时,这就是我一直在寻找的答案。希望对其他人有用。

@GavinSimpson:重新排序是一个强大而有效的解决方案:

ggplot(theTable,
       aes(x=reorder(Position,Position,
                     function(x)-length(x)))) +
       geom_bar()

我认为已经提供的解决方案过于冗长。使用ggplot进行频率排序barplot的一种更简洁的方法是

ggplot(theTable, aes(x=reorder(Position, -table(Position)[Position]))) + geom_bar()

它类似于Alex Brown的建议,但更简短,并且不需要任何函数定义。

更新

我认为我的旧解决方案在当时是好的,但现在我宁愿使用forcats::fct_infreq,它是按频率排序因子级别:

require(forcats)

ggplot(theTable, aes(fct_infreq(Position))) + geom_bar()