这将在GUI中显示图形:
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [1, 4, 9])
plt.show()
但我如何将图形保存到文件(例如foo.png)中?
这将在GUI中显示图形:
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [1, 4, 9])
plt.show()
但我如何将图形保存到文件(例如foo.png)中?
当前回答
解决方案:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
plt.figure()
ts.plot()
plt.savefig("foo.png", bbox_inches='tight')
如果您想显示图像并保存图像,请使用:
%matplotlib inline
之后导入matplotlib
其他回答
正如其他人所说,plt.savefig()或fig1.savefig)确实是保存图像的方法。
然而,我发现在某些情况下,数字总是显示出来的。(例如,Spyder具有plt.ion():交互式模式=打开。)强制关闭图形窗口:
plt.close(figure_object)
(参见文档)。这样,在一个大循环中,我就不会有一百万个未结数字。示例用法:
import matplotlib.pyplot as plt
fig, ax = plt.subplots( nrows=1, ncols=1 ) # create figure & 1 axis
ax.plot([0,1,2], [10,20,3])
fig.savefig('path/to/save/image/to.png') # save the figure to file
plt.close(fig) # close the figure window
如果需要,您可以稍后使用图show()重新打开该图(我自己没有测试)。
使用plot()和其他函数创建所需的内容后,可以使用如下子句在绘制到屏幕或文件之间进行选择:
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(4, 5)) # size in inches
# use plot(), etc. to create your plot.
# Pick one of the following lines to uncomment
# save_file = None
# save_file = os.path.join(your_directory, your_file_name)
if save_file:
plt.savefig(save_file)
plt.close(fig)
else:
plt.show()
考虑到今天(提出这个问题时还不可用)许多人使用Jupyter Notebook作为python控制台,有一种极其简单的方法可以将绘图保存为.png,只需从Jupyter记事本调用matplotlib的pylab类,绘制图形“内联”Jupyter单元格,然后将该图形/图像拖到本地目录。别忘了%matplotlib在第一行中内联!
刚刚在MatPlotLib文档中找到了解决此问题的链接:http://matplotlib.org/faq/howto_faq.html#generate-图像-无窗口外观
他们说,防止弹出图形的最简单方法是通过matplotib.use(<backend>)使用非交互式后端(例如Agg),例如:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig('myfig')
我个人还是更喜欢使用plt.close(图),因为这样你就可以选择隐藏某些数字(在循环期间),但仍然可以显示循环后数据处理的数字。它可能比选择非交互式后端要慢——如果有人测试了它,那会很有趣。
UPDATE:对于Spyder,通常不能以这种方式设置后端(因为Spyder通常会提前加载matplotlib,从而阻止您使用matplotlib.use())。
相反,请使用plt.switch_backend('Agg'),或在Spyder prefs中关闭“enable support”,然后自己运行matplotlib.use('Agg')命令。
从这两个提示中:一、二
如前所述,您可以使用:
import matplotlib.pyplot as plt
plt.savefig("myfig.png")
用于保存您正在显示的任何IPhython图像。或者换个角度(从不同的角度看),如果你曾经使用过open cv,或者你已经导入了open cv的话,你可以去:
import cv2
cv2.imwrite("myfig.png",image)
但这只是为了以防万一,如果您需要使用OpenCV。否则plt.savefig()就足够了。