在Python中,如果不使用traceback模块,是否有一种方法可以从函数内部确定函数的名称?
假设我有一个模块foo和一个功能栏。当执行foo.bar()时,是否有一种方法让bar知道bar的名字?或者更好的是,foo。酒吧的名字吗?
#foo.py
def bar():
print "my name is", __myname__ # <== how do I calculate this at runtime?
在Python中,如果不使用traceback模块,是否有一种方法可以从函数内部确定函数的名称?
假设我有一个模块foo和一个功能栏。当执行foo.bar()时,是否有一种方法让bar知道bar的名字?或者更好的是,foo。酒吧的名字吗?
#foo.py
def bar():
print "my name is", __myname__ # <== how do I calculate this at runtime?
当前回答
@jeff-laughlin的回答很漂亮。我对它进行了轻微的修改,以达到我认为的目的:跟踪函数的执行,并捕获参数列表以及关键字参数。谢谢你@jeff-laughlin!
from functools import wraps
import time
def named(func):
@wraps(func)
def _(*args, **kwargs):
print(f"From wrapper function: Executing function named: {func.__name__}, with arguments: {args}, and keyword arguments: {kwargs}.")
print(f"From wrapper function: {func}")
start_time = time.time()
return_value = func(*args, **kwargs)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"From wrapper function: Execution of {func.__name__} took {elapsed_time} seconds.")
return return_value
return _
@named
def thanks(message, concepts, username='@jeff-laughlin'):
print(f"From inner function: {message} {username} for teaching me about the {concepts} concepts of closures and decorators!")
thanks('Thank you', 'two', username='@jeff-laughlin')
print('-'*80)
thanks('Thank you', 'two', username='stackoverflow')
print(thanks)
From wrapper function: Executing function named: thanks, with arguments: ('Thank you', 'two'), and keyword arguments: {'username': '@jeff-laughlin'}. From wrapper function: <function thanks at 0x7f13e6ceaa60> From inner function: Thank you @jeff-laughlin for teaching me about the two concepts of closures and decorators! From wrapper function: Execution of thanks took 2.193450927734375e-05 seconds. -------------------------------------------------------------------------------- From wrapper function: Executing function named: thanks, with arguments: ('Thank you', 'two'), and keyword arguments: {'username': 'stackoverflow'}. From wrapper function: <function thanks at 0x7f13e6ceaa60> From inner function: Thank you stackoverflow for teaching me about the two concepts of closures and decorators! From wrapper function: Execution of thanks took 7.152557373046875e-06 seconds. <function thanks at 0x7f13e6ceaca0>
最让我惊讶的是,有一种方法可以在运行时拦截函数,检查它们,并基于此采取一些操作。另一件令人惊讶的事情是内部函数的内存地址两次都是相同的。有人知道这是为什么吗?在我能够理解这个装饰器/闭包魔法之前,我还有一段路要走。
其他回答
有几种方法可以达到相同的效果:
import sys
import inspect
def what_is_my_name():
print(inspect.stack()[0][0].f_code.co_name)
print(inspect.stack()[0][3])
print(inspect.currentframe().f_code.co_name)
print(sys._getframe().f_code.co_name)
注意inspect。堆栈调用比替代方法慢数千倍:
$ python -m timeit -s 'import inspect, sys' 'inspect.stack()[0][0].f_code.co_name'
1000 loops, best of 3: 499 usec per loop
$ python -m timeit -s 'import inspect, sys' 'inspect.stack()[0][3]'
1000 loops, best of 3: 497 usec per loop
$ python -m timeit -s 'import inspect, sys' 'inspect.currentframe().f_code.co_name'
10000000 loops, best of 3: 0.1 usec per loop
$ python -m timeit -s 'import inspect, sys' 'sys._getframe().f_code.co_name'
10000000 loops, best of 3: 0.135 usec per loop
2021年8月更新(原文章为Python2.7编写)
Python 3.9.1 (default, Dec 11 2020, 14:32:07)
[GCC 7.3.0] :: Anaconda, Inc. on linux
python -m timeit -s 'import inspect, sys' 'inspect.stack()[0][0].f_code.co_name'
500 loops, best of 5: 390 usec per loop
python -m timeit -s 'import inspect, sys' 'inspect.stack()[0][3]'
500 loops, best of 5: 398 usec per loop
python -m timeit -s 'import inspect, sys' 'inspect.currentframe().f_code.co_name'
2000000 loops, best of 5: 176 nsec per loop
python -m timeit -s 'import inspect, sys' 'sys._getframe().f_code.co_name'
5000000 loops, best of 5: 62.8 nsec per loop
我喜欢使用装饰器的想法,但我更喜欢避免触及函数参数。因此,我提供了另一种选择:
import functools
def withname(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
global __name
__saved_name = globals().get("__name")
__name = f.__name__
ret = f(*args, **kwargs)
__name = __saved_name
return ret
return wrapper
@withname
def f():
print(f"in f: __name=={__name}")
g()
print(f"back in f: __name=={__name}")
@withname
def g():
print(f"in g: __name=={__name}")
由于__name是一个全局变量,所以在调用函数时需要保存和恢复__name。调用上面的f()会产生:
in f: __name==f
in g: __name==g
back in f: __name==f
不幸的是,如果我们不改变函数参数,就没有全局变量的替代品。引用一个不是在函数上下文中创建的变量,将生成寻找全局变量的代码:
>>> def f(): print(__function__)
>>> from dis import dis
>>> dis(f)
1 0 LOAD_GLOBAL 0 (print)
2 LOAD_GLOBAL 1 (__function__)
4 CALL_FUNCTION 1
6 POP_TOP
8 LOAD_CONST 0 (None)
10 RETURN_VALUE
Python没有在函数本身中访问函数或其名称的特性。它已经被提出,但被否决了。如果你不想自己玩堆栈,你应该使用“bar”或bar。__name__取决于上下文。
给定的拒绝通知为:
此PEP被拒绝。它不清楚应该如何实现,也不清楚在边缘情况下应该有什么精确的语义,而且没有给出足够重要的用例。人们的反应充其量也只是不温不火。
str(str(inspect.currentframe())).split(' ')[-1][:-1]
这实际上是由这个问题的其他答案推导出来的。
以下是我的看法:
import sys
# for current func name, specify 0 or no argument.
# for name of caller of current func, specify 1.
# for name of caller of caller of current func, specify 2. etc.
currentFuncName = lambda n=0: sys._getframe(n + 1).f_code.co_name
def testFunction():
print "You are in function:", currentFuncName()
print "This function's caller was:", currentFuncName(1)
def invokeTest():
testFunction()
invokeTest()
# end of file
与使用inspect.stack()相比,这个版本可能的优势是它应该快数千倍[参见Alex Melihoff关于使用sys._getframe()与使用inspect.stack()的文章和计时]。