在Python中,如果不使用traceback模块,是否有一种方法可以从函数内部确定函数的名称?
假设我有一个模块foo和一个功能栏。当执行foo.bar()时,是否有一种方法让bar知道bar的名字?或者更好的是,foo。酒吧的名字吗?
#foo.py
def bar():
print "my name is", __myname__ # <== how do I calculate this at runtime?
在Python中,如果不使用traceback模块,是否有一种方法可以从函数内部确定函数的名称?
假设我有一个模块foo和一个功能栏。当执行foo.bar()时,是否有一种方法让bar知道bar的名字?或者更好的是,foo。酒吧的名字吗?
#foo.py
def bar():
print "my name is", __myname__ # <== how do I calculate this at runtime?
当前回答
functionNameAsString = sys._getframe().f_code.co_name
我想要一个非常相似的东西,因为我想把函数名放在一个log字符串中,在我的代码中有很多地方。可能不是最好的方法,但这里有一种获取当前函数名称的方法。
其他回答
import inspect
def whoami():
return inspect.stack()[1][3]
def whosdaddy():
return inspect.stack()[2][3]
def foo():
print "hello, I'm %s, daddy is %s" % (whoami(), whosdaddy())
bar()
def bar():
print "hello, I'm %s, daddy is %s" % (whoami(), whosdaddy())
foo()
bar()
在IDE中,代码输出
你好,我是foo,爸爸是 你好,我是bar,爸爸是foo 你好,我是bar,爸爸是
有几种方法可以达到相同的效果:
import sys
import inspect
def what_is_my_name():
print(inspect.stack()[0][0].f_code.co_name)
print(inspect.stack()[0][3])
print(inspect.currentframe().f_code.co_name)
print(sys._getframe().f_code.co_name)
注意inspect。堆栈调用比替代方法慢数千倍:
$ python -m timeit -s 'import inspect, sys' 'inspect.stack()[0][0].f_code.co_name'
1000 loops, best of 3: 499 usec per loop
$ python -m timeit -s 'import inspect, sys' 'inspect.stack()[0][3]'
1000 loops, best of 3: 497 usec per loop
$ python -m timeit -s 'import inspect, sys' 'inspect.currentframe().f_code.co_name'
10000000 loops, best of 3: 0.1 usec per loop
$ python -m timeit -s 'import inspect, sys' 'sys._getframe().f_code.co_name'
10000000 loops, best of 3: 0.135 usec per loop
2021年8月更新(原文章为Python2.7编写)
Python 3.9.1 (default, Dec 11 2020, 14:32:07)
[GCC 7.3.0] :: Anaconda, Inc. on linux
python -m timeit -s 'import inspect, sys' 'inspect.stack()[0][0].f_code.co_name'
500 loops, best of 5: 390 usec per loop
python -m timeit -s 'import inspect, sys' 'inspect.stack()[0][3]'
500 loops, best of 5: 398 usec per loop
python -m timeit -s 'import inspect, sys' 'inspect.currentframe().f_code.co_name'
2000000 loops, best of 5: 176 nsec per loop
python -m timeit -s 'import inspect, sys' 'sys._getframe().f_code.co_name'
5000000 loops, best of 5: 62.8 nsec per loop
这很容易用装饰器完成。
>>> from functools import wraps
>>> def named(func):
... @wraps(func)
... def _(*args, **kwargs):
... return func(func.__name__, *args, **kwargs)
... return _
...
>>> @named
... def my_func(name, something_else):
... return name, something_else
...
>>> my_func('hello, world')
('my_func', 'hello, world')
我把这个实用工具放在附近:
import inspect
myself = lambda: inspect.stack()[1][3]
用法:
myself()
这实际上是由这个问题的其他答案推导出来的。
以下是我的看法:
import sys
# for current func name, specify 0 or no argument.
# for name of caller of current func, specify 1.
# for name of caller of caller of current func, specify 2. etc.
currentFuncName = lambda n=0: sys._getframe(n + 1).f_code.co_name
def testFunction():
print "You are in function:", currentFuncName()
print "This function's caller was:", currentFuncName(1)
def invokeTest():
testFunction()
invokeTest()
# end of file
与使用inspect.stack()相比,这个版本可能的优势是它应该快数千倍[参见Alex Melihoff关于使用sys._getframe()与使用inspect.stack()的文章和计时]。