我有一个熊猫数据框架与一列:

import pandas as pd

df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})

       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

如何将这列列表分成两列?

预期的结果:

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

当前回答

列表理解

带有列表理解的简单实现(我的最爱)

df = pd.DataFrame([pd.Series(x) for x in df.teams])
df.columns = ['team_{}'.format(x+1) for x in df.columns]

输出计时:

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 2.71 ms

输出:

team_1    team_2
0    SF    NYG
1    SF    NYG
2    SF    NYG
3    SF    NYG
4    SF    NYG
5    SF    NYG
6    SF    NYG

其他回答

列表理解

带有列表理解的简单实现(我的最爱)

df = pd.DataFrame([pd.Series(x) for x in df.teams])
df.columns = ['team_{}'.format(x+1) for x in df.columns]

输出计时:

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 2.71 ms

输出:

team_1    team_2
0    SF    NYG
1    SF    NYG
2    SF    NYG
3    SF    NYG
4    SF    NYG
5    SF    NYG
6    SF    NYG

根据前面的回答,下面是另一个解决方案,它返回与df2.teams.apply(pd.Series)相同的结果,但运行时间要快得多:

pd.DataFrame([{x: y for x, y in enumerate(item)} for item in df2['teams'].values.tolist()], index=df2.index)

计时:

In [1]:
import pandas as pd
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
                ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2 = pd.concat([df2]*1000).reset_index(drop=True)

In [2]: %timeit df2['teams'].apply(pd.Series)

8.27 s ± 2.73 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [3]: %timeit pd.DataFrame([{x: y for x, y in enumerate(item)} for item in df2['teams'].values.tolist()], index=df2.index)

35.4 ms ± 5.22 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

以前的解决方案并不适用于我,因为我在我的数据框架中有nan观察。在我的例子中,df2[['team1','team2']] = pd.DataFrame(df2.teams.values.tolist(), index= df2.index)产生:

object of type 'float' has no len()

我用一个列表理解来解决这个问题。下面是一个可复制的例子:

import pandas as pd
import numpy as np
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
            ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2.loc[2,'teams'] = np.nan
df2.loc[4,'teams'] = np.nan
df2

输出:

        teams
0   [SF, NYG]
1   [SF, NYG]
2   NaN
3   [SF, NYG]
4   NaN
5   [SF, NYG]
6   [SF, NYG]

df2['team1']=np.nan
df2['team2']=np.nan

用列表推导法求解,

for i in [0,1]:
    df2['team{}'.format(str(i+1))]=[k[i] if isinstance(k,list) else k for k in df2['teams']]

df2

收益率:

    teams   team1   team2
0   [SF, NYG]   SF  NYG
1   [SF, NYG]   SF  NYG
2   NaN        NaN  NaN
3   [SF, NYG]   SF  NYG
4   NaN        NaN  NaN
5   [SF, NYG]   SF  NYG
6   [SF, NYG]   SF  NYG

你可以使用DataFrame构造函数和由to_list创建的列表:

import pandas as pd

d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
                ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
print (df2)
       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

df2[['team1','team2']] = pd.DataFrame(df2.teams.tolist(), index= df2.index)
print (df2)
       teams team1 team2
0  [SF, NYG]    SF   NYG
1  [SF, NYG]    SF   NYG
2  [SF, NYG]    SF   NYG
3  [SF, NYG]    SF   NYG
4  [SF, NYG]    SF   NYG
5  [SF, NYG]    SF   NYG
6  [SF, NYG]    SF   NYG

对于一个新的DataFrame:

df3 = pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
print (df3)
  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

使用apply(pd.Series)的解决方案非常慢:

#7k rows
df2 = pd.concat([df2]*1000).reset_index(drop=True)

In [121]: %timeit df2['teams'].apply(pd.Series)
1.79 s ± 52.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [122]: %timeit pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
1.63 ms ± 54.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

这个解决方案保留了df2 DataFrame的索引,不像任何使用tolist()的解决方案:

df3 = df2.teams.apply(pd.Series)
df3.columns = ['team1', 'team2']

结果如下:

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG