简单的解决方案
使用numpy。点或a.b点。请在这里查看文档。
>>> a = np.array([[ 5, 1 ,3],
[ 1, 1 ,1],
[ 1, 2 ,1]])
>>> b = np.array([1, 2, 3])
>>> print a.dot(b)
array([16, 6, 8])
这是因为numpy数组不是矩阵,标准操作*、+、-和/在数组上按元素工作。
注意,虽然可以使用numpy。矩阵(从2021年初开始),其中*将被视为标准矩阵乘法,numpy。矩阵已弃用,可能会在未来的版本中删除。见其文件中的说明(下文转载):
不再推荐使用这个类,即使是线性代数。相反,请使用常规数组。该类将来可能会被删除。
谢谢@HopeKing。
其他的解决方案
也要知道还有其他选择:
As noted below, if using python3.5+ and numpy v1.10+, the @ operator works as you'd expect:
>>> print(a @ b)
array([16, 6, 8])
If you want overkill, you can use numpy.einsum. The documentation will give you a flavor for how it works, but honestly, I didn't fully understand how to use it until reading this answer and just playing around with it on my own.
>>> np.einsum('ji,i->j', a, b)
array([16, 6, 8])
As of mid 2016 (numpy 1.10.1), you can try the experimental numpy.matmul, which works like numpy.dot with two major exceptions: no scalar multiplication but it works with stacks of matrices.
>>> np.matmul(a, b)
array([16, 6, 8])
numpy.inner functions the same way as numpy.dot for matrix-vector multiplication but behaves differently for matrix-matrix and tensor multiplication (see Wikipedia regarding the differences between the inner product and dot product in general or see this SO answer regarding numpy's implementations).
>>> np.inner(a, b)
array([16, 6, 8])
# Beware using for matrix-matrix multiplication though!
>>> b = a.T
>>> np.dot(a, b)
array([[35, 9, 10],
[ 9, 3, 4],
[10, 4, 6]])
>>> np.inner(a, b)
array([[29, 12, 19],
[ 7, 4, 5],
[ 8, 5, 6]])
If you have multiple 2D arrays to dot together, you may consider the np.linalg.multi_dot function, which simplifies the syntax of many nested np.dots. Note that this only works with 2D arrays (i.e. not for matrix-vector multiplication).
>>> np.dot(np.dot(a, a.T), a).dot(a.T)
array([[1406, 382, 446],
[ 382, 106, 126],
[ 446, 126, 152]])
>>> np.linalg.multi_dot((a, a.T, a, a.T))
array([[1406, 382, 446],
[ 382, 106, 126],
[ 446, 126, 152]])
边缘情况的罕见选项
如果有张量(维数大于或等于1的数组),可以使用numpy。带有可选参数axes=1的Tensordot:
> > > np。Tensordot (a, b, axes=1)
数组([16,6,8])
不要使用numpy。如果你有一个复数矩阵,因为矩阵将被平坦化为一个一维数组,那么它将尝试在你的平坦矩阵和向量之间找到复共轭点积(这将失败,因为大小不匹配n*m vs n)。