我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

获得点访问(但不是数组访问)的一个简单方法是在Python中使用一个普通对象。是这样的:

class YourObject:
    def __init__(self, *args, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)

...像这样使用它:

>>> obj = YourObject(key="value")
>>> print(obj.key)
"value"

... 把它转换成字典:

>>> print(obj.__dict__)
{"key": "value"}

其他回答

最简单的解决方案。

定义一个只有pass语句的类。为该类创建对象并使用点表示法。

class my_dict:
    pass

person = my_dict()
person.id = 1 # create using dot notation
person.phone = 9999
del person.phone # Remove a property using dot notation

name_data = my_dict()
name_data.first_name = 'Arnold'
name_data.last_name = 'Schwarzenegger'

person.name = name_data
person.name.first_name # dot notation access for nested properties - gives Arnold

使用namedtuple允许点访问。

它就像一个轻量级对象,也具有元组的属性。

它允许定义属性并使用点操作符访问它们。

from collections import namedtuple
Data = namedtuple('Data', ['key1', 'key2'])

dataObj = Data(val1, key2=val2) # can instantiate using keyword arguments and positional arguments

使用点运算符访问

dataObj.key1 # Gives val1
datObj.key2 # Gives val2

使用元组索引进行访问

dataObj[0] # Gives val1
dataObj[1] # Gives val2

但记住这是一个元组;不是字典。因此下面的代码将给出错误

dataObj['key1'] # Gives TypeError: tuple indices must be integers or slices, not str

参考:namedtuple

派生自dict和并实现__getattr__和__setattr__。

或者你也可以用Bunch,非常相似。

我不认为这是可能的monkeypatch内置字典类。

kaggle_environments使用的实现是一个名为structify的函数。

class Struct(dict):
    def __init__(self, **entries):
        entries = {k: v for k, v in entries.items() if k != "items"}
        dict.__init__(self, entries)
        self.__dict__.update(entries)

    def __setattr__(self, attr, value):
        self.__dict__[attr] = value
        self[attr] = value

# Added benefit of cloning lists and dicts.
def structify(o):
    if isinstance(o, list):
        return [structify(o[i]) for i in range(len(o))]
    elif isinstance(o, dict):
        return Struct(**{k: structify(v) for k, v in o.items()})
    return o

https://github.com/Kaggle/kaggle-environments/blob/master/kaggle_environments/utils.py

这可能有助于在《ConnectX》等游戏中测试AI模拟代理

from kaggle_environments import structify

obs  = structify({ 'remainingOverageTime': 60, 'step': 0, 'mark': 1, 'board': [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]})
conf = structify({ 'timeout': 2, 'actTimeout': 2, 'agentTimeout': 60, 'episodeSteps': 1000, 'runTimeout': 1200, 'columns': 7, 'rows': 6, 'inarow': 4, '__raw_path__': '/kaggle_simulations/agent/main.py' })

def agent(obs, conf):
  action = obs.step % conf.columns
  return action

我不喜欢在(超过)10年前的火灾中添加另一个日志,但我也会检查dotwiz库,它是我最近发布的——实际上就在今年。

它是一个相对较小的库,在基准测试中,它在get(访问)和设置(创建)时间方面也表现得非常好,至少与其他备选方案相比是这样。

通过pip安装dotwiz

pip install dotwiz

它能做你想让它做的所有事情,并继承dict的子类,所以它的操作就像一个普通的字典:

from dotwiz import DotWiz

dw = DotWiz()
dw.hello = 'world'
dw.hello
dw.hello += '!'
# dw.hello and dw['hello'] now both return 'world!'
dw.val = 5
dw.val2 = 'Sam'

最重要的是,你可以将它转换为dict对象:

d = dw.to_dict()
dw = DotWiz(d) # automatic conversion in constructor

这意味着如果你想访问的东西已经是dict形式的,你可以把它变成一个dotwz来方便访问:

import json
json_dict = json.loads(text)
data = DotWiz(json_dict)
print data.location.city

最后,我正在做的一些令人兴奋的事情是一个现有的特性请求,这样它就会自动创建新的子DotWiz实例,这样你就可以做这样的事情:

dw = DotWiz()
dw['people.steve.age'] = 31

dw
# ✫(people=✫(steve=✫(age=31)))

与点图比较

我在下面添加了一个快速而粗略的性能比较。

首先,用pip安装两个库:

pip install dotwiz dotmap

为了进行基准测试,我编写了以下代码:

from timeit import timeit

from dotwiz import DotWiz
from dotmap import DotMap


d = {'hey': {'so': [{'this': {'is': {'pretty': {'cool': True}}}}]}}

dw = DotWiz(d)
# ✫(hey=✫(so=[✫(this=✫(is=✫(pretty={'cool'})))]))

dm = DotMap(d)
# DotMap(hey=DotMap(so=[DotMap(this=DotMap(is=DotMap(pretty={'cool'})))]))

assert dw.hey.so[0].this['is'].pretty.cool == dm.hey.so[0].this['is'].pretty.cool

n = 100_000

print('dotwiz (create):  ', round(timeit('DotWiz(d)', number=n, globals=globals()), 3))
print('dotmap (create):  ', round(timeit('DotMap(d)', number=n, globals=globals()), 3))
print('dotwiz (get):  ', round(timeit("dw.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))
print('dotmap (get):  ', round(timeit("dm.hey.so[0].this['is'].pretty.cool", number=n, globals=globals()), 3))

结果,在我的M1 Mac上运行Python 3.10:

dotwiz (create):   0.189
dotmap (create):   1.085
dotwiz (get):   0.014
dotmap (get):   0.335