我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
当前回答
您可以使用SimpleNamespace来实现这一点
from types import SimpleNamespace
# Assign values
args = SimpleNamespace()
args.username = 'admin'
# Retrive values
print(args.username) # output: admin
其他回答
我一直把它保存在util文件中。您也可以在自己的类中使用它作为mixin。
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
mydict = {'val':'it works'}
nested_dict = {'val':'nested works too'}
mydict = dotdict(mydict)
mydict.val
# 'it works'
mydict.nested = dotdict(nested_dict)
mydict.nested.val
# 'nested works too'
不喜欢。在Python中,属性访问和索引是分开的事情,您不应该希望它们执行相同的操作。创建一个类(可能是由namedtuple创建的),如果你有一些应该具有可访问属性的东西,并使用[]符号从字典中获取一个项。
如果你已经在使用pandas,你可以构造一个pandas Series或DataFrame,从中你可以通过点语法访问项目:
1级字典:
import pandas as pd
my_dictionary = pd.Series({
'key1': 'value1',
'key2': 'value2'
})
print(my_dictionary.key1)
# Output: value1
2级字典:
import pandas as pd
my_dictionary = pd.DataFrame({
'key1': {
'inner_key1': 'value1'
},
'key2': {
'inner_key2': 'value2'
}
})
print(my_dictionary.key1.inner_key1)
# Output: value1
请注意,这可能在规范化数据结构(其中每个字典条目都具有相同的结构)下工作得更好。在上面的第二个例子中,得到的DataFrame是:
key1 key2
inner_key1 value1 NaN
inner_key2 NaN value2
获得点访问(但不是数组访问)的一个简单方法是在Python中使用一个普通对象。是这样的:
class YourObject:
def __init__(self, *args, **kwargs):
for k, v in kwargs.items():
setattr(self, k, v)
...像这样使用它:
>>> obj = YourObject(key="value")
>>> print(obj.key)
"value"
... 把它转换成字典:
>>> print(obj.__dict__)
{"key": "value"}
如果你想pickle你修改后的字典,你需要添加几个状态方法到上面的答案:
class DotDict(dict):
"""dot.notation access to dictionary attributes"""
def __getattr__(self, attr):
return self.get(attr)
__setattr__= dict.__setitem__
__delattr__= dict.__delitem__
def __getstate__(self):
return self
def __setstate__(self, state):
self.update(state)
self.__dict__ = self