我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
当前回答
基于Kugel的回答,并考虑到Mike Graham的警告,如果我们制作一个包装器呢?
class DictWrap(object):
""" Wrap an existing dict, or create a new one, and access with either dot
notation or key lookup.
The attribute _data is reserved and stores the underlying dictionary.
When using the += operator with create=True, the empty nested dict is
replaced with the operand, effectively creating a default dictionary
of mixed types.
args:
d({}): Existing dict to wrap, an empty dict is created by default
create(True): Create an empty, nested dict instead of raising a KeyError
example:
>>>dw = DictWrap({'pp':3})
>>>dw.a.b += 2
>>>dw.a.b += 2
>>>dw.a['c'] += 'Hello'
>>>dw.a['c'] += ' World'
>>>dw.a.d
>>>print dw._data
{'a': {'c': 'Hello World', 'b': 4, 'd': {}}, 'pp': 3}
"""
def __init__(self, d=None, create=True):
if d is None:
d = {}
supr = super(DictWrap, self)
supr.__setattr__('_data', d)
supr.__setattr__('__create', create)
def __getattr__(self, name):
try:
value = self._data[name]
except KeyError:
if not super(DictWrap, self).__getattribute__('__create'):
raise
value = {}
self._data[name] = value
if hasattr(value, 'items'):
create = super(DictWrap, self).__getattribute__('__create')
return DictWrap(value, create)
return value
def __setattr__(self, name, value):
self._data[name] = value
def __getitem__(self, key):
try:
value = self._data[key]
except KeyError:
if not super(DictWrap, self).__getattribute__('__create'):
raise
value = {}
self._data[key] = value
if hasattr(value, 'items'):
create = super(DictWrap, self).__getattribute__('__create')
return DictWrap(value, create)
return value
def __setitem__(self, key, value):
self._data[key] = value
def __iadd__(self, other):
if self._data:
raise TypeError("A Nested dict will only be replaced if it's empty")
else:
return other
其他回答
你可以用我刚做的这个类来做。对于这个类,您可以像使用另一个字典(包括json序列化)一样使用Map对象,或者使用点表示法。希望对大家有所帮助:
class Map(dict):
"""
Example:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
"""
def __init__(self, *args, **kwargs):
super(Map, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.iteritems():
self[k] = v
if kwargs:
for k, v in kwargs.iteritems():
self[k] = v
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Map, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Map, self).__delitem__(key)
del self.__dict__[key]
使用例子:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
# Add new key
m.new_key = 'Hello world!'
# Or
m['new_key'] = 'Hello world!'
print m.new_key
print m['new_key']
# Update values
m.new_key = 'Yay!'
# Or
m['new_key'] = 'Yay!'
# Delete key
del m.new_key
# Or
del m['new_key']
派生自dict和并实现__getattr__和__setattr__。
或者你也可以用Bunch,非常相似。
我不认为这是可能的monkeypatch内置字典类。
使用namedtuple允许点访问。
它就像一个轻量级对象,也具有元组的属性。
它允许定义属性并使用点操作符访问它们。
from collections import namedtuple
Data = namedtuple('Data', ['key1', 'key2'])
dataObj = Data(val1, key2=val2) # can instantiate using keyword arguments and positional arguments
使用点运算符访问
dataObj.key1 # Gives val1
datObj.key2 # Gives val2
使用元组索引进行访问
dataObj[0] # Gives val1
dataObj[1] # Gives val2
但记住这是一个元组;不是字典。因此下面的代码将给出错误
dataObj['key1'] # Gives TypeError: tuple indices must be integers or slices, not str
参考:namedtuple
一个很微妙的解
class DotDict(dict):
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def __getattr__(self, key):
def typer(candidate):
if isinstance(candidate, dict):
return DotDict(candidate)
if isinstance(candidate, str): # iterable but no need to iter
return candidate
try: # other iterable are processed as list
return [typer(item) for item in candidate]
except TypeError:
return candidate
return candidate
return typer(dict.get(self, key))
我的观点:出于我自己的目的,我开发了minydra,一个简单的命令行解析器,包括一个自定义类MinyDict(灵感来自addict):
In [1]: from minydra import MinyDict
In [2]: args = MinyDict({"foo": "bar", "yes.no.maybe": "idontknow"}).pretty_print(); args
╭──────────────────────────────╮
│ foo : bar │
│ yes.no.maybe : idontknow │
╰──────────────────────────────╯
Out[2]: {'foo': 'bar', 'yes.no.maybe': 'idontknow'}
In [3]: args.resolve().pretty_print(); args
╭──────────────────────────╮
│ foo : bar │
│ yes │
│ │no │
│ │ │maybe : idontknow │
╰──────────────────────────╯
Out[3]: {'foo': 'bar', 'yes': {'no': {'maybe': 'idontknow'}}}
In [4]: args.yes.no.maybe
Out[4]: "idontknow"
In [5]: "foo" in args
Out[5]: True
In [6]: "rick" in args
Out[6]: False
In [7]: args.morty is None
Out[7]: True
In [8]: args.items()
Out[8]: dict_items([('foo', 'bar'), ('yes', {'no': {'maybe': 'idontknow'}})])
它通过向json yaml和pickle添加转储/加载方法来上瘾,并且在MinyDict.update()中也有一个严格的模式来防止创建新键(这对于防止命令行中的错字很有用)