我如何使Python字典成员访问通过点“。”?

例如,我想写mydict.val而不是mydict['val']。

我还想以这种方式访问嵌套字典。例如

mydict.mydict2.val 

会提到

mydict = { 'mydict2': { 'val': ... } }

当前回答

基于Kugel的回答,并考虑到Mike Graham的警告,如果我们制作一个包装器呢?

class DictWrap(object):
  """ Wrap an existing dict, or create a new one, and access with either dot 
    notation or key lookup.

    The attribute _data is reserved and stores the underlying dictionary.
    When using the += operator with create=True, the empty nested dict is 
    replaced with the operand, effectively creating a default dictionary
    of mixed types.

    args:
      d({}): Existing dict to wrap, an empty dict is created by default
      create(True): Create an empty, nested dict instead of raising a KeyError

    example:
      >>>dw = DictWrap({'pp':3})
      >>>dw.a.b += 2
      >>>dw.a.b += 2
      >>>dw.a['c'] += 'Hello'
      >>>dw.a['c'] += ' World'
      >>>dw.a.d
      >>>print dw._data
      {'a': {'c': 'Hello World', 'b': 4, 'd': {}}, 'pp': 3}

  """

  def __init__(self, d=None, create=True):
    if d is None:
      d = {}
    supr = super(DictWrap, self)  
    supr.__setattr__('_data', d)
    supr.__setattr__('__create', create)

  def __getattr__(self, name):
    try:
      value = self._data[name]
    except KeyError:
      if not super(DictWrap, self).__getattribute__('__create'):
        raise
      value = {}
      self._data[name] = value

    if hasattr(value, 'items'):
      create = super(DictWrap, self).__getattribute__('__create')
      return DictWrap(value, create)
    return value

  def __setattr__(self, name, value):
    self._data[name] = value  

  def __getitem__(self, key):
    try:
      value = self._data[key]
    except KeyError:
      if not super(DictWrap, self).__getattribute__('__create'):
        raise
      value = {}
      self._data[key] = value

    if hasattr(value, 'items'):
      create = super(DictWrap, self).__getattribute__('__create')
      return DictWrap(value, create)
    return value

  def __setitem__(self, key, value):
    self._data[key] = value

  def __iadd__(self, other):
    if self._data:
      raise TypeError("A Nested dict will only be replaced if it's empty")
    else:
      return other

其他回答

此解决方案是对epool提供的解决方案的改进,以满足OP以一致的方式访问嵌套字典的需求。epool的解决方案不允许访问嵌套字典。

class YAMLobj(dict):
    def __init__(self, args):
        super(YAMLobj, self).__init__(args)
        if isinstance(args, dict):
            for k, v in args.iteritems():
                if not isinstance(v, dict):
                    self[k] = v
                else:
                    self.__setattr__(k, YAMLobj(v))


    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(YAMLobj, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(YAMLobj, self).__delitem__(key)
        del self.__dict__[key]

使用这个类,现在可以执行如下操作:A.B.C.D.

用于无限级别的字典、列表、字典的列表和列表的字典的嵌套。

它还支持酸洗

这是这个答案的延伸。

class DotDict(dict):
    # https://stackoverflow.com/a/70665030/913098
    """
    Example:
    m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])

    Iterable are assumed to have a constructor taking list as input.
    """

    def __init__(self, *args, **kwargs):
        super(DotDict, self).__init__(*args, **kwargs)

        args_with_kwargs = []
        for arg in args:
            args_with_kwargs.append(arg)
        args_with_kwargs.append(kwargs)
        args = args_with_kwargs

        for arg in args:
            if isinstance(arg, dict):
                for k, v in arg.items():
                    self[k] = v
                    if isinstance(v, dict):
                        self[k] = DotDict(v)
                    elif isinstance(v, str) or isinstance(v, bytes):
                        self[k] = v
                    elif isinstance(v, Iterable):
                        klass = type(v)
                        map_value: List[Any] = []
                        for e in v:
                            map_e = DotDict(e) if isinstance(e, dict) else e
                            map_value.append(map_e)
                        self[k] = klass(map_value)



    def __getattr__(self, attr):
        return self.get(attr)

    def __setattr__(self, key, value):
        self.__setitem__(key, value)

    def __setitem__(self, key, value):
        super(DotDict, self).__setitem__(key, value)
        self.__dict__.update({key: value})

    def __delattr__(self, item):
        self.__delitem__(item)

    def __delitem__(self, key):
        super(DotDict, self).__delitem__(key)
        del self.__dict__[key]

    def __getstate__(self):
        return self.__dict__

    def __setstate__(self, d):
        self.__dict__.update(d)


if __name__ == "__main__":
    import pickle
    def test_map():
        d = {
            "a": 1,
            "b": {
                "c": "d",
                "e": 2,
                "f": None
            },
            "g": [],
            "h": [1, "i"],
            "j": [1, "k", {}],
            "l":
                [
                    1,
                    "m",
                    {
                        "n": [3],
                        "o": "p",
                        "q": {
                            "r": "s",
                            "t": ["u", 5, {"v": "w"}, ],
                            "x": ("z", 1)
                        }
                    }
                ],
        }
        map_d = DotDict(d)
        w = map_d.l[2].q.t[2].v
        assert w == "w"

        pickled = pickle.dumps(map_d)
        unpickled = pickle.loads(pickled)
        assert unpickled == map_d

        kwargs_check = DotDict(a=1, b=[dict(c=2, d="3"), 5])
        assert kwargs_check.b[0].d == "3"

        kwargs_and_args_check = DotDict(d, a=1, b=[dict(c=2, d="3"), 5])
        assert kwargs_and_args_check.l[2].q.t[2].v == "w"
        assert kwargs_and_args_check.b[0].d == "3"



    test_map()

派生自dict和并实现__getattr__和__setattr__。

或者你也可以用Bunch,非常相似。

我不认为这是可能的monkeypatch内置字典类。

获得点访问(但不是数组访问)的一个简单方法是在Python中使用一个普通对象。是这样的:

class YourObject:
    def __init__(self, *args, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)

...像这样使用它:

>>> obj = YourObject(key="value")
>>> print(obj.key)
"value"

... 把它转换成字典:

>>> print(obj.__dict__)
{"key": "value"}

kaggle_environments使用的实现是一个名为structify的函数。

class Struct(dict):
    def __init__(self, **entries):
        entries = {k: v for k, v in entries.items() if k != "items"}
        dict.__init__(self, entries)
        self.__dict__.update(entries)

    def __setattr__(self, attr, value):
        self.__dict__[attr] = value
        self[attr] = value

# Added benefit of cloning lists and dicts.
def structify(o):
    if isinstance(o, list):
        return [structify(o[i]) for i in range(len(o))]
    elif isinstance(o, dict):
        return Struct(**{k: structify(v) for k, v in o.items()})
    return o

https://github.com/Kaggle/kaggle-environments/blob/master/kaggle_environments/utils.py

这可能有助于在《ConnectX》等游戏中测试AI模拟代理

from kaggle_environments import structify

obs  = structify({ 'remainingOverageTime': 60, 'step': 0, 'mark': 1, 'board': [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]})
conf = structify({ 'timeout': 2, 'actTimeout': 2, 'agentTimeout': 60, 'episodeSteps': 1000, 'runTimeout': 1200, 'columns': 7, 'rows': 6, 'inarow': 4, '__raw_path__': '/kaggle_simulations/agent/main.py' })

def agent(obs, conf):
  action = obs.step % conf.columns
  return action