我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
我如何使Python字典成员访问通过点“。”?
例如,我想写mydict.val而不是mydict['val']。
我还想以这种方式访问嵌套字典。例如
mydict.mydict2.val
会提到
mydict = { 'mydict2': { 'val': ... } }
当前回答
基于epool的答案,这个版本允许你通过点操作符访问任何字典:
foo = {
"bar" : {
"baz" : [ {"boo" : "hoo"} , {"baba" : "loo"} ]
}
}
例如,foo.bar.baz[1]。爸爸回答“loo”。
class Map(dict):
def __init__(self, *args, **kwargs):
super(Map, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.items():
if isinstance(v, dict):
v = Map(v)
if isinstance(v, list):
self.__convert(v)
self[k] = v
if kwargs:
for k, v in kwargs.items():
if isinstance(v, dict):
v = Map(v)
elif isinstance(v, list):
self.__convert(v)
self[k] = v
def __convert(self, v):
for elem in range(0, len(v)):
if isinstance(v[elem], dict):
v[elem] = Map(v[elem])
elif isinstance(v[elem], list):
self.__convert(v[elem])
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Map, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Map, self).__delitem__(key)
del self.__dict__[key]
其他回答
I ended up trying BOTH the AttrDict and the Bunch libraries and found them to be way to slow for my uses. After a friend and I looked into it, we found that the main method for writing these libraries results in the library aggressively recursing through a nested object and making copies of the dictionary object throughout. With this in mind, we made two key changes. 1) We made attributes lazy-loaded 2) instead of creating copies of a dictionary object, we create copies of a light-weight proxy object. This is the final implementation. The performance increase of using this code is incredible. When using AttrDict or Bunch, these two libraries alone consumed 1/2 and 1/3 respectively of my request time(what!?). This code reduced that time to almost nothing(somewhere in the range of 0.5ms). This of course depends on your needs, but if you are using this functionality quite a bit in your code, definitely go with something simple like this.
class DictProxy(object):
def __init__(self, obj):
self.obj = obj
def __getitem__(self, key):
return wrap(self.obj[key])
def __getattr__(self, key):
try:
return wrap(getattr(self.obj, key))
except AttributeError:
try:
return self[key]
except KeyError:
raise AttributeError(key)
# you probably also want to proxy important list properties along like
# items(), iteritems() and __len__
class ListProxy(object):
def __init__(self, obj):
self.obj = obj
def __getitem__(self, key):
return wrap(self.obj[key])
# you probably also want to proxy important list properties along like
# __iter__ and __len__
def wrap(value):
if isinstance(value, dict):
return DictProxy(value)
if isinstance(value, (tuple, list)):
return ListProxy(value)
return value
参见https://stackoverflow.com/users/704327/michael-merickel的原始实现。
另一件需要注意的事情是,这个实现非常简单,并且没有实现您可能需要的所有方法。您需要根据需要在DictProxy或ListProxy对象上写入这些内容。
这是我从很久以前的一个项目里挖出来的。它可能还可以再优化一点,但就是这样了。
class DotNotation(dict):
__setattr__= dict.__setitem__
__delattr__= dict.__delitem__
def __init__(self, data):
if isinstance(data, str):
data = json.loads(data)
for name, value in data.items():
setattr(self, name, self._wrap(value))
def __getattr__(self, attr):
def _traverse(obj, attr):
if self._is_indexable(obj):
try:
return obj[int(attr)]
except:
return None
elif isinstance(obj, dict):
return obj.get(attr, None)
else:
return attr
if '.' in attr:
return reduce(_traverse, attr.split('.'), self)
return self.get(attr, None)
def _wrap(self, value):
if self._is_indexable(value):
# (!) recursive (!)
return type(value)([self._wrap(v) for v in value])
elif isinstance(value, dict):
return DotNotation(value)
else:
return value
@staticmethod
def _is_indexable(obj):
return isinstance(obj, (tuple, list, set, frozenset))
if __name__ == "__main__":
test_dict = {
"dimensions": {
"length": "112",
"width": "103",
"height": "42"
},
"meta_data": [
{
"id": 11089769,
"key": "imported_gallery_files",
"value": [
"https://example.com/wp-content/uploads/2019/09/unnamed-3.jpg",
"https://example.com/wp-content/uploads/2019/09/unnamed-2.jpg",
"https://example.com/wp-content/uploads/2019/09/unnamed-4.jpg"
]
}
]
}
dotted_dict = DotNotation(test_dict)
print(dotted_dict.dimensions.length) # => '112'
print(getattr(dotted_dict, 'dimensions.length')) # => '112'
print(dotted_dict.meta_data[0].key) # => 'imported_gallery_files'
print(getattr(dotted_dict, 'meta_data.0.key')) # => 'imported_gallery_files'
print(dotted_dict.meta_data[0].value) # => ['link1','link2','link2']
print(getattr(dotted_dict, 'meta_data.0.value')) # => ['link1','link2','link3']
print(dotted_dict.meta_data[0].value[2]) # => 'link3'
print(getattr(dotted_dict, 'meta_data.0.value.2')) # => 'link3'
@derek73的答案非常简洁,但它不能被pickle或(深度)复制,并且它在缺少键时返回None。下面的代码修复了这个问题。
编辑:我没有看到上面的答案解决了完全相同的问题(点赞)。我把答案留在这里供参考。
class dotdict(dict):
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def __getattr__(self, name):
try:
return self[name]
except KeyError:
raise AttributeError(name)
获得点访问(但不是数组访问)的一个简单方法是在Python中使用一个普通对象。是这样的:
class YourObject:
def __init__(self, *args, **kwargs):
for k, v in kwargs.items():
setattr(self, k, v)
...像这样使用它:
>>> obj = YourObject(key="value")
>>> print(obj.key)
"value"
... 把它转换成字典:
>>> print(obj.__dict__)
{"key": "value"}
我的观点:出于我自己的目的,我开发了minydra,一个简单的命令行解析器,包括一个自定义类MinyDict(灵感来自addict):
In [1]: from minydra import MinyDict
In [2]: args = MinyDict({"foo": "bar", "yes.no.maybe": "idontknow"}).pretty_print(); args
╭──────────────────────────────╮
│ foo : bar │
│ yes.no.maybe : idontknow │
╰──────────────────────────────╯
Out[2]: {'foo': 'bar', 'yes.no.maybe': 'idontknow'}
In [3]: args.resolve().pretty_print(); args
╭──────────────────────────╮
│ foo : bar │
│ yes │
│ │no │
│ │ │maybe : idontknow │
╰──────────────────────────╯
Out[3]: {'foo': 'bar', 'yes': {'no': {'maybe': 'idontknow'}}}
In [4]: args.yes.no.maybe
Out[4]: "idontknow"
In [5]: "foo" in args
Out[5]: True
In [6]: "rick" in args
Out[6]: False
In [7]: args.morty is None
Out[7]: True
In [8]: args.items()
Out[8]: dict_items([('foo', 'bar'), ('yes', {'no': {'maybe': 'idontknow'}})])
它通过向json yaml和pickle添加转储/加载方法来上瘾,并且在MinyDict.update()中也有一个严格的模式来防止创建新键(这对于防止命令行中的错字很有用)