我经常在终端上使用Series和DataFrames。Series的默认__repr__返回一个减少的样本,其中有一些头部和尾部值,但其余的都没有。

是否有一种内置的方式来漂亮地打印整个系列/数据帧?理想情况下,它应该支持适当的对齐,可能是列之间的边界,甚至可能是不同列的颜色编码。


当前回答

脚本

没有人提出过这种简单的纯文本解决方案:

from pprint import pprint

pprint(s.to_dict())

产生如下结果:

{'% Diabetes': 0.06365372374283895,
 '% Obesity': 0.06365372374283895,
 '% Bachelors': 0.0,
 '% Poverty': 0.09548058561425843,
 '% Driving Deaths': 1.1775938892425206,
 '% Excessive Drinking': 0.06365372374283895}

Jupyter記本嗎

此外,当使用Jupyter笔记本时,这是一个很好的解决方案。

注意:pd.Series()没有.to_html(),所以必须转换为pd.DataFrame()

from IPython.display import display, HTML

display(HTML(s.to_frame().to_html()))

产生如下结果:

其他回答

脚本

没有人提出过这种简单的纯文本解决方案:

from pprint import pprint

pprint(s.to_dict())

产生如下结果:

{'% Diabetes': 0.06365372374283895,
 '% Obesity': 0.06365372374283895,
 '% Bachelors': 0.0,
 '% Poverty': 0.09548058561425843,
 '% Driving Deaths': 1.1775938892425206,
 '% Excessive Drinking': 0.06365372374283895}

Jupyter記本嗎

此外,当使用Jupyter笔记本时,这是一个很好的解决方案。

注意:pd.Series()没有.to_html(),所以必须转换为pd.DataFrame()

from IPython.display import display, HTML

display(HTML(s.to_frame().to_html()))

产生如下结果:

使用表格包:

pip install tabulate

考虑下面的示例用法:

import pandas as pd
from io import StringIO
from tabulate import tabulate

c = """Chromosome Start End
chr1 3 6
chr1 5 7
chr1 8 9"""

df = pd.read_table(StringIO(c), sep="\s+", header=0)

print(tabulate(df, headers='keys', tablefmt='psql'))

+----+--------------+---------+-------+
|    | Chromosome   |   Start |   End |
|----+--------------+---------+-------|
|  0 | chr1         |       3 |     6 |
|  1 | chr1         |       5 |     7 |
|  2 | chr1         |       8 |     9 |
+----+--------------+---------+-------+

datasroller的创建部分是为了解决这个问题。

pip install datascroller

它将数据帧加载到终端视图中,你可以用鼠标或方向键“滚动”,有点像终端上的Excel工作簿,支持查询、高亮显示等。

import pandas as pd
from datascroller import scroll

# Call `scroll` with a Pandas DataFrame as the sole argument:
my_df = pd.read_csv('<path to your csv>')
scroll(my_df)

披露:我是datascroller的作者之一

使用pd.options.display

这个答案是lucidyan先前答案的一个变体。它通过避免使用set_option使代码更具可读性。

导入pandas后,作为使用上下文管理器的另一种选择,设置以下选项来显示大数据框架:

def set_pandas_display_options() -> None:
    """Set pandas display options."""
    # Ref: https://stackoverflow.com/a/52432757/
    display = pd.options.display

    display.max_columns = 1000
    display.max_rows = 1000
    display.max_colwidth = 199
    display.width = 1000
    # display.precision = 2  # set as needed

set_pandas_display_options()

在此之后,如果使用笔记本电脑,您可以使用display(df)或仅使用df,否则使用print(df)。

使用to_string

Pandas 0.25.3有DataFrame。to_string和Series。接受格式化选项的To_string方法。

使用to_markdown

如果你需要的是降价输出,Pandas 1.0.0有DataFrame。to_markdown和Series。to_markdown方法。

使用to_html

如果你需要的是HTML输出,Pandas 0.25.3确实有一个DataFrame。to_html方法,而不是Series.to_html方法。注意Series可以转换为DataFrame。

导入pandas后,作为使用上下文管理器的另一种选择,设置这些选项来显示整个数据框架:

pd.set_option('display.max_columns', None)  # or 1000
pd.set_option('display.max_rows', None)  # or 1000
pd.set_option('display.max_colwidth', None)  # or 199

有关有用选项的完整列表,请参见:

pd.describe_option('display')