我经常在终端上使用Series和DataFrames。Series的默认__repr__返回一个减少的样本,其中有一些头部和尾部值,但其余的都没有。

是否有一种内置的方式来漂亮地打印整个系列/数据帧?理想情况下,它应该支持适当的对齐,可能是列之间的边界,甚至可能是不同列的颜色编码。


当前回答

使用表格包:

pip install tabulate

考虑下面的示例用法:

import pandas as pd
from io import StringIO
from tabulate import tabulate

c = """Chromosome Start End
chr1 3 6
chr1 5 7
chr1 8 9"""

df = pd.read_table(StringIO(c), sep="\s+", header=0)

print(tabulate(df, headers='keys', tablefmt='psql'))

+----+--------------+---------+-------+
|    | Chromosome   |   Start |   End |
|----+--------------+---------+-------|
|  0 | chr1         |       3 |     6 |
|  1 | chr1         |       5 |     7 |
|  2 | chr1         |       8 |     9 |
+----+--------------+---------+-------+

其他回答

尝试使用display()函数。这将自动使用水平和垂直滚动条,这样你就可以轻松地显示不同的数据集,而不是使用print()。

display(dataframe)

Display()也支持正确的对齐。

然而,如果你想让数据集更漂亮,你可以检查pd.option_context()。它有很多选项来清楚地显示数据框架。

注:我正在使用Jupyter笔记本电脑。

使用表格包:

pip install tabulate

考虑下面的示例用法:

import pandas as pd
from io import StringIO
from tabulate import tabulate

c = """Chromosome Start End
chr1 3 6
chr1 5 7
chr1 8 9"""

df = pd.read_table(StringIO(c), sep="\s+", header=0)

print(tabulate(df, headers='keys', tablefmt='psql'))

+----+--------------+---------+-------+
|    | Chromosome   |   Start |   End |
|----+--------------+---------+-------|
|  0 | chr1         |       3 |     6 |
|  1 | chr1         |       5 |     7 |
|  2 | chr1         |       8 |     9 |
+----+--------------+---------+-------+

试试这个

pd.set_option('display.height',1000)
pd.set_option('display.max_rows',500)
pd.set_option('display.max_columns',500)
pd.set_option('display.width',1000)

导入pandas后,作为使用上下文管理器的另一种选择,设置这些选项来显示整个数据框架:

pd.set_option('display.max_columns', None)  # or 1000
pd.set_option('display.max_rows', None)  # or 1000
pd.set_option('display.max_colwidth', None)  # or 199

有关有用选项的完整列表,请参见:

pd.describe_option('display')

你可以将expand_frame_repr设置为False:

显示。Expand_frame_repr:布尔值 是否打印宽DataFrame的完整DataFrame repr 跨多行,max_columns仍然得到尊重,但是输出 如果它的宽度超过了,会在多个“页面”上环绕吗 display.width。 (默认值:真实)


pd.set_option('expand_frame_repr', False)

要了解更多细节,请阅读如何漂亮地打印熊猫数据框架和系列