在一个C程序中,我尝试了以下操作(只是为了检查行为)

 x = 5 % (-3);
 y = (-5) % (3);
 z = (-5) % (-3); 

printf("%d ,%d ,%d", x, y, z); 

在gcc中输出为(2,-2,-2)我以为每次都会有积极的结果。模量可以是负的吗?有人能解释一下这种行为吗?


当前回答

看来问题不在现场操作。

int mod(int m, float n)
{  
  return m - floor(m/n)*n;
}

其他回答

在数学中,这些惯例的起源,没有断言模算术应该产生一个正的结果。

Eg.

1 mod 5 = 1,但也可以等于-4。也就是说,1/5从0得到余数1或从5得到余数-4。(都是5的因数)

同样的, -1 mod 5 = -1,它也可以等于4。也就是说,-1/5从0得到余数-1或从-5得到余数4。(都是5的因数)

要进一步阅读,请参阅数学中的等价类。

C中的%操作符不是模操作符而是余数操作符。

模运算符和余数运算符不同于负值。

对于余数运算符,结果的符号与被除数(分子)的符号相同,而对于模运算符,结果的符号与除数(分母)的符号相同。

C将a % b的%操作定义为:

  a == (a / b * b) + a % b

用/表示整型除法,并截断为0。这是对0(而不是负无穷)的截断,它将%定义为余数运算符而不是模运算符。

模算子给出余数。 c中的模算子通常取分子的符号

X = 5%(-3)这里分子是正的,所以结果是2 Y =(-5) %(3)分子为负,结果为-2 Z =(-5) %(-3)这里分子是负的所以结果是-2

此外,模(余数)运算符只能用于整型,不能用于浮点数。

模量可以是负的吗?

%可以是负数,因为它是余数运算符,是除法后的余数,而不是欧几里得除法后的余数。由于C99的结果可能是0,负或正。

 // a % b
 7 %  3 -->  1  
 7 % -3 -->  1  
-7 %  3 --> -1  
-7 % -3 --> -1  

要的模OP是一个经典的欧几里得模,而不是%。

我以为每次都会有积极的结果。

要执行定义良好的欧几里得模,只要a/b有定义,a,b是任意符号,且结果永远不为负:

int modulo_Euclidean(int a, int b) {
  int m = a % b;
  if (m < 0) {
    // m += (b < 0) ? -b : b; // avoid this form: it is UB when b == INT_MIN
    m = (b < 0) ? m - b : m + b;
  }
  return m;
}

modulo_Euclidean( 7,  3) -->  1  
modulo_Euclidean( 7, -3) -->  1  
modulo_Euclidean(-7,  3) -->  2  
modulo_Euclidean(-7, -3) -->  2   

根据C99标准,第6.5.5节 乘法运算符,需要以下条件:

(a / b) * b + a % b = a

结论

余数运算结果的符号 到C99,和红利是一样的。

让我们看一些例子(除数/除数):

只有股息是负的

(-3 / 2) * 2  +  -3 % 2 = -3

(-3 / 2) * 2 = -2

(-3 % 2) must be -1

当只有除数为负时

(3 / -2) * -2  +  3 % -2 = 3

(3 / -2) * -2 = 2

(3 % -2) must be 1

除数和被除数都为负

(-3 / -2) * -2  +  -3 % -2 = -3

(-3 / -2) * -2 = -2

(-3 % -2) must be -1

6.5.5 Multiplicative operators Syntax multiplicative-expression: cast-expression multiplicative-expression * cast-expression multiplicative-expression / cast-expression multiplicative-expression % cast-expression Constraints Each of the operands shall have arithmetic type. The operands of the % operator shall have integer type. Semantics The usual arithmetic conversions are performed on the operands. The result of the binary * operator is the product of the operands. The result of the / operator is the quotient from the division of the first operand by the second; the result of the % operator is the remainder. In both operations, if the value of the second operand is zero, the behavior is undefined. When integers are divided, the result of the / operator is the algebraic quotient with any fractional part discarded [1]. If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a. [1]: This is often called "truncation toward zero".