在一个C程序中,我尝试了以下操作(只是为了检查行为)
x = 5 % (-3);
y = (-5) % (3);
z = (-5) % (-3);
printf("%d ,%d ,%d", x, y, z);
在gcc中输出为(2,-2,-2)我以为每次都会有积极的结果。模量可以是负的吗?有人能解释一下这种行为吗?
在一个C程序中,我尝试了以下操作(只是为了检查行为)
x = 5 % (-3);
y = (-5) % (3);
z = (-5) % (-3);
printf("%d ,%d ,%d", x, y, z);
在gcc中输出为(2,-2,-2)我以为每次都会有积极的结果。模量可以是负的吗?有人能解释一下这种行为吗?
当前回答
C中的%操作符不是模操作符而是余数操作符。
模运算符和余数运算符不同于负值。
对于余数运算符,结果的符号与被除数(分子)的符号相同,而对于模运算符,结果的符号与除数(分母)的符号相同。
C将a % b的%操作定义为:
a == (a / b * b) + a % b
用/表示整型除法,并截断为0。这是对0(而不是负无穷)的截断,它将%定义为余数运算符而不是模运算符。
其他回答
看来问题不在现场操作。
int mod(int m, float n)
{
return m - floor(m/n)*n;
}
根据C99标准,第6.5.5节 乘法运算符,需要以下条件:
(a / b) * b + a % b = a
结论
余数运算结果的符号 到C99,和红利是一样的。
让我们看一些例子(除数/除数):
只有股息是负的
(-3 / 2) * 2 + -3 % 2 = -3
(-3 / 2) * 2 = -2
(-3 % 2) must be -1
当只有除数为负时
(3 / -2) * -2 + 3 % -2 = 3
(3 / -2) * -2 = 2
(3 % -2) must be 1
除数和被除数都为负
(-3 / -2) * -2 + -3 % -2 = -3
(-3 / -2) * -2 = -2
(-3 % -2) must be -1
6.5.5 Multiplicative operators Syntax multiplicative-expression: cast-expression multiplicative-expression * cast-expression multiplicative-expression / cast-expression multiplicative-expression % cast-expression Constraints Each of the operands shall have arithmetic type. The operands of the % operator shall have integer type. Semantics The usual arithmetic conversions are performed on the operands. The result of the binary * operator is the product of the operands. The result of the / operator is the quotient from the division of the first operand by the second; the result of the % operator is the remainder. In both operations, if the value of the second operand is zero, the behavior is undefined. When integers are divided, the result of the / operator is the algebraic quotient with any fractional part discarded [1]. If the quotient a/b is representable, the expression (a/b)*b + a%b shall equal a. [1]: This is often called "truncation toward zero".
模算子给出余数。 c中的模算子通常取分子的符号
X = 5%(-3)这里分子是正的,所以结果是2 Y =(-5) %(3)分子为负,结果为-2 Z =(-5) %(-3)这里分子是负的所以结果是-2
此外,模(余数)运算符只能用于整型,不能用于浮点数。
在数学中,这些惯例的起源,没有断言模算术应该产生一个正的结果。
Eg.
1 mod 5 = 1,但也可以等于-4。也就是说,1/5从0得到余数1或从5得到余数-4。(都是5的因数)
同样的, -1 mod 5 = -1,它也可以等于4。也就是说,-1/5从0得到余数-1或从-5得到余数4。(都是5的因数)
要进一步阅读,请参阅数学中的等价类。
我认为没有必要检查数字是否为负。
求正模的一个简单函数是这个-
编辑:假设N > 0和N + N - 1 <= INT_MAX
int modulo(int x,int N){
return (x % N + N) %N;
}
这对x的正负都成立。
原始p.s.:也正如@chux指出的那样,如果你的x和N可能分别达到INT_MAX-1和INT_MAX,只需将int替换为long long int。
如果它们也越过了long long的限制(即在LLONG_MAX附近),那么你应该分别处理正的和负的情况,在这里的其他答案中描述。