我已经在我的ubuntu 16.04中安装了tensorflow,使用的是ubuntu内置的apt cuda安装。

现在我的问题是,我如何测试tensorflow是否真的使用gpu?我有一个gtx 960m gpu。当我导入tensorflow时,这是输出

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

这个输出是否足够检查tensorflow是否使用gpu ?


当前回答

你可以通过运行下面的代码来检查你是否正在使用GPU:

import tensorflow as tf
tf.test.gpu_device_name()

如果输出是“,这意味着你只使用CPU; 如果输出类似于/device:GPU:0,这意味着GPU工作。


并使用下面的代码来检查您使用的GPU:

from tensorflow.python.client import device_lib 
device_lib.list_local_devices()

其他回答

你有一些选项来测试你的TensorFlow安装是否正在使用GPU加速。

您可以在三种不同的平台上输入以下命令。

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Jupyter Notebook -检查运行Jupyter Notebook的控制台。你将能够看到GPU正在被使用。 Python Shell -你将能够直接看到输出。(注意-不要将第二个命令的输出分配给变量'sess';如果这有帮助的话)。 Spyder -在控制台中输入以下命令。 将tensorflow导入为tf tf.test.is_gpu_available ()

除了使用sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)),这是在其他答案和官方TensorFlow文档中列出的,你可以尝试给gpu分配一个计算,看看你是否有错误。

import tensorflow as tf
with tf.device('/gpu:0'):
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)

with tf.Session() as sess:
    print (sess.run(c))

在这里

"/cpu:0":您机器的cpu。 "/gpu:0":你机器的gpu,如果你有的话。

如果你有一个gpu并且可以使用它,你会看到结果。否则,您将看到一个带有很长的堆栈跟踪的错误。最后你会得到这样的结果:

无法将设备分配给节点“MatMul”:无法满足显式要求 设备规格'/device:GPU:0'因为没有设备与之匹配 规范是在这个过程中注册的


最近在TF中出现了几个有用的函数:

tf.test。Is_gpu_available表示gpu是否可用 tf.test。Gpu_device_name返回gpu设备名称

你也可以检查会话中可用的设备:

with tf.Session() as sess:
  devices = sess.list_devices()

设备会给你一些类似的东西

[_DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:CPU:0, CPU, -1, 4670268618893924978),
 _DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 6127825144471676437),
 _DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:XLA_GPU:0, XLA_GPU, 17179869184, 16148453971365832732),
 _DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 10003582050679337480),
 _DeviceAttributes(/job:tpu_worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 5678397037036584928)

在新版本的TF(>2.1)中,检查TF是否使用GPU的建议方法是:

tf.config.list_physical_devices('GPU')

这将证实张量流使用GPU同时训练也?

Code

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

输出

I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties: 
name: GeForce GT 730
major: 3 minor: 5 memoryClockRate (GHz) 0.9015
pciBusID 0000:01:00.0
Total memory: 1.98GiB
Free memory: 1.72GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0)
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0
I tensorflow/core/common_runtime/direct_session.cc:255] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GT 730, pci bus id: 0000:01:00.0

我认为有一种更简单的方法来实现这一点。

import tensorflow as tf
if tf.test.gpu_device_name():
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
else:
    print("Please install GPU version of TF")

它通常是这样的

Default GPU Device: /device:GPU:0

对我来说,这似乎比那些冗长的日志更容易。

编辑: 对TF 1进行了测试。x版本。我从来没有机会做TF 2.0或以上的东西,所以请记住。