我已经在我的ubuntu 16.04中安装了tensorflow,使用的是ubuntu内置的apt cuda安装。

现在我的问题是,我如何测试tensorflow是否真的使用gpu?我有一个gtx 960m gpu。当我导入tensorflow时,这是输出

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

这个输出是否足够检查tensorflow是否使用gpu ?


当前回答

在新版本的TF(>2.1)中,检查TF是否使用GPU的建议方法是:

tf.config.list_physical_devices('GPU')

其他回答

你可以通过运行下面的代码来检查你是否正在使用GPU:

import tensorflow as tf
tf.test.gpu_device_name()

如果输出是“,这意味着你只使用CPU; 如果输出类似于/device:GPU:0,这意味着GPU工作。


并使用下面的代码来检查您使用的GPU:

from tensorflow.python.client import device_lib 
device_lib.list_local_devices()

Tensorflow 2.0

会话在2.0中不再使用。相反,可以使用tf.test.is_gpu_available:

import tensorflow as tf

assert tf.test.is_gpu_available()
assert tf.test.is_built_with_cuda()

如果出现错误,则需要检查安装。

我更喜欢使用nvidia-smi来监控GPU使用情况。如果当你开始你的程序时,它显著上升,这是一个强烈的迹象,表明你的张量流正在使用GPU。

对于Tensorflow 2.0

import tensorflow as tf

tf.test.is_gpu_available(
    cuda_only=False,
    min_cuda_compute_capability=None
)

源在这里

其他选择是:

tf.config.experimental.list_physical_devices('GPU')

下面还将返回GPU设备的名称。

import tensorflow as tf
tf.test.gpu_device_name()