我已经在我的ubuntu 16.04中安装了tensorflow,使用的是ubuntu内置的apt cuda安装。

现在我的问题是,我如何测试tensorflow是否真的使用gpu?我有一个gtx 960m gpu。当我导入tensorflow时,这是输出

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

这个输出是否足够检查tensorflow是否使用gpu ?


当前回答

这是我用来列出tf可用设备的行。会话直接从bash:

python -c "import os; os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'; import tensorflow as tf; sess = tf.Session(); [print(x) for x in sess.list_devices()]; print(tf.__version__);"

它将打印可用的设备和tensorflow版本,例如:

_DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 268435456, 10588614393916958794)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_GPU:0, XLA_GPU, 17179869184, 12320120782636586575)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 13378821206986992411)
_DeviceAttributes(/job:localhost/replica:0/task:0/device:GPU:0, GPU, 32039954023, 12481654498215526877)
1.14.0

其他回答

你有一些选项来测试你的TensorFlow安装是否正在使用GPU加速。

您可以在三种不同的平台上输入以下命令。

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

Jupyter Notebook -检查运行Jupyter Notebook的控制台。你将能够看到GPU正在被使用。 Python Shell -你将能够直接看到输出。(注意-不要将第二个命令的输出分配给变量'sess';如果这有帮助的话)。 Spyder -在控制台中输入以下命令。 将tensorflow导入为tf tf.test.is_gpu_available ()

除了其他答案之外,以下内容应该有助于确保你的tensorflow版本包含GPU支持。

import tensorflow as tf
print(tf.test.is_built_with_cuda())

对于TF2.4+, tensorflow网站上列出的“官方”方法来检查TF是否使用GPU

>>> import tensorflow as tf
>>> print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
Num GPUs Available:  2

更新为tensorflow >= 2.1

检查TensorFlow是否使用GPU的推荐方法如下:

tf.config.list_physical_devices('GPU') 

从TensorFlow 2.1开始,tf.test.gpu_device_name()已经被弃用,取而代之的是前面提到的。

然后,在终端中,您可以使用nvidia-smi检查有多少GPU内存已分配;同时,使用watch -n K nvidia-smi会告诉你,例如每K秒你使用了多少内存(你可能想使用K = 1实时)

如果你有多个GPU,你想使用多个网络,每个网络都在一个独立的GPU上,你可以使用:

 with tf.device('/GPU:0'):
      neural_network_1 = initialize_network_1()
 with tf.device('/GPU:1'):
      neural_network_2 = initialize_network_2()

对于Tensorflow 2.0

import tensorflow as tf

tf.test.is_gpu_available(
    cuda_only=False,
    min_cuda_compute_capability=None
)

源在这里

其他选择是:

tf.config.experimental.list_physical_devices('GPU')