这是C++代码的一块 显示一些非常特殊的行为
由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:
#include
#include
#include
int main()
{
// Generate data
const unsigned arraySize = 32768;
int data[arraySize];
for (unsigned c = 0; c < arraySize; ++c)
data[c] = std::rand() % 256;
// !!! With this, the next loop runs faster.
std::sort(data, data + arraySize);
// Test
clock_t start = clock();
long long sum = 0;
for (unsigned i = 0; i < 100000; ++i)
{
for (unsigned c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;
std::cout << elapsedTime << '\n';
std::cout << "sum = " << sum << '\n';
}
没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。
(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)
起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:
import java.util.Arrays;
import java.util.Random;
public class Main
{
public static void main(String[] args)
{
// Generate data
int arraySize = 32768;
int data[] = new int[arraySize];
Random rnd = new Random(0);
for (int c = 0; c < arraySize; ++c)
data[c] = rnd.nextInt() % 256;
// !!! With this, the next loop runs faster
Arrays.sort(data);
// Test
long start = System.nanoTime();
long sum = 0;
for (int i = 0; i < 100000; ++i)
{
for (int c = 0; c < arraySize; ++c)
{ // Primary loop.
if (data[c] >= 128)
sum += data[c];
}
}
System.out.println((System.nanoTime() - start) / 1000000000.0);
System.out.println("sum = " + sum);
}
}
其结果类似,但不太极端。
我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。
为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?
守则正在总结一些独立的术语,因此命令不应重要。
与不同的/后来的汇编者和备选办法具有相同效果:
为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2
我用MATLAB 2011b 和我的MacBook Pro(Intel i7, 64位, 2.4 GHz) 尝试了以下MATLAB 代码的相同代码 :
% Processing time with Sorted data vs unsorted data
%==========================================================================
% Generate data
arraySize = 32768
sum = 0;
% Generate random integer data from range 0 to 255
data = randi(256, arraySize, 1);
%Sort the data
data1= sort(data); % data1= data when no sorting done
%Start a stopwatch timer to measure the execution time
tic;
for i=1:100000
for j=1:arraySize
if data1(j)>=128
sum=sum + data1(j);
end
end
end
toc;
ExeTimeWithSorting = toc - tic;
上述MATLAB代码的结果如下:
a: Elapsed time (without sorting) = 3479.880861 seconds.
b: Elapsed time (with sorting ) = 2377.873098 seconds.
校对:Soup
a: Elapsed time (without sorting) = 19.8761 sec.
b: Elapsed time (with sorting ) = 7.37778 sec.
基于这一点,看来MATLAB比C执行慢了175倍,没有分类,比C执行慢了350倍,换言之,(分支预测)MATLAB执行效果为1.46x,C执行效果为2.7x。
分流收益!
重要的是要理解分支错误控制不会减慢程序。 错误预测的成本就好像不存在分支预测,而你等待着对表达方式的评价来决定运行的代码(下段有进一步的解释 ) 。
if (expression)
{
// Run 1
} else {
// Run 2
}
当出现 if-else \ 切换语句时, 表达式必须被评估以确定要执行哪个区块。 在编译者生成的组装代码中, 插入有条件的分支指令 。
分支指令可导致计算机开始执行不同的指令序列,从而偏离其默认的按顺序执行指令的行为(即如果表达式是虚假的,程序会跳过区块的代码),这取决于某些条件,即我们情况下的表达式评价。
尽管如此, 编译者试图预测结果, 然后再对结果进行实际评估。 它会从区块中获取指示, 如果表达方式是真实的, 那么就太好了! 我们得到了时间来评估它, 并在代码中取得了进步; 如果不是那样, 我们运行错误的代码, 管道就会被冲洗, 正确的区块会运行 。
可视化:
假设你需要选择路线1或路线2, 等待你的伴侣检查地图, 你已经停留在 ##,等待, 或者你可以选择路线1, 如果你运气好(路线1是正确的路线), 那么伟大的你不必等待你的伴侣检查地图(你省下时间让他检查地图), 否则你就会转回去。
尽管冲水管道的速度超快,但如今赌博是值得的。 预测分类数据或缓慢变化的数据总是比预测快速变化容易,也好于预测快速变化。
O Route 1 /-------------------------------
/|\ /
| ---------##/
/ \ \
\
Route 2 \--------------------------------
我用MATLAB 2011b 和我的MacBook Pro(Intel i7, 64位, 2.4 GHz) 尝试了以下MATLAB 代码的相同代码 :
% Processing time with Sorted data vs unsorted data
%==========================================================================
% Generate data
arraySize = 32768
sum = 0;
% Generate random integer data from range 0 to 255
data = randi(256, arraySize, 1);
%Sort the data
data1= sort(data); % data1= data when no sorting done
%Start a stopwatch timer to measure the execution time
tic;
for i=1:100000
for j=1:arraySize
if data1(j)>=128
sum=sum + data1(j);
end
end
end
toc;
ExeTimeWithSorting = toc - tic;
上述MATLAB代码的结果如下:
a: Elapsed time (without sorting) = 3479.880861 seconds.
b: Elapsed time (with sorting ) = 2377.873098 seconds.
校对:Soup
a: Elapsed time (without sorting) = 19.8761 sec.
b: Elapsed time (with sorting ) = 7.37778 sec.
基于这一点,看来MATLAB比C执行慢了175倍,没有分类,比C执行慢了350倍,换言之,(分支预测)MATLAB执行效果为1.46x,C执行效果为2.7x。
在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。
事实上,阵列被分割在一个毗连区,数据小于128,另一个数据小于128。 因此,你应该用二组搜索(使用 Lg(数组)=15 比较)找到分区点,然后从该点进行直线积累。
类似的东西( 未检查 )
int i= 0, j, k= arraySize;
while (i < k)
{
j= (i + k) >> 1;
if (data[j] >= 128)
k= j;
else
i= j;
}
sum= 0;
for (; i < arraySize; i++)
sum+= data[i];
或, 略微糊涂
int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
sum+= data[i];
一种既快又快的方法,为分类或未分类两种方法提供了大致的解决办法,即:总和=3137536;(假设真正统一分布,预计价值为191.5的16384个样品:-)