这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

避免分支预测错误的一种方法是建立一个搜索表,并用数据来编制索引。 Stefan de Bruijn在答复中讨论了这一点。

但在此情况下,我们知道值在范围[0,255],我们只关心值 128。这意味着我们可以很容易地提取一小块来说明我们是否想要一个值:通过将数据移到右边的7位数,我们只剩下0位或1位数,我们只有1位数时才想要增加值。让我们把这个位数称为“决定位数 ” 。

将决定位数的 0/1 值作为索引输入一个阵列, 我们就可以生成一个代码, 无论数据是排序还是未排序, 都同样快速。 我们的代码总是会添加一个值, 但是当决定位数为 0 时, 我们将会添加一个值, 我们并不关心的地方 。 以下是代码 :

// Test
clock_t start = clock();
long long a[] = {0, 0};
long long sum;

for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        int j = (data[c] >> 7);
        a[j] += data[c];
    }
}

double elapsedTime = static_cast<double>(clock() - start) / CLOCKS_PER_SEC;
sum = a[1];

此代码浪费了一半的添加值, 但从未出现分支预测失败 。 随机数据比有实际的如果声明的版本要快得多 。

但在我的测试中,一个清晰的查看表比这个稍快一些, 可能是因为对查看表的索引比位移略快一点。 这显示了我的代码是如何设置和使用搜索表的( 在代码中“ 查看表” 中, 不可想象地称之为润滑 ) 。 以下是 C++ 代码 :

// Declare and then fill in the lookup table
int lut[256];
for (unsigned c = 0; c < 256; ++c)
    lut[c] = (c >= 128) ? c : 0;

// Use the lookup table after it is built
for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        sum += lut[data[c]];
    }
}

在此情况下, 查看表只有256 字节, 所以它在一个缓存中非常适合, 并且非常快。 如果数据是 24 位值, 而我们只想要其中一半的话, 这个技术就不会有效... 搜索表会太大而不切实际。 另一方面, 我们可以将上面显示的两种技术结合起来: 首先将比特移开, 然后将一个查看表索引。 对于一个仅需要顶端半值的 24 位值, 我们可能会将数据右移12 位值, 并留下一个 12 位值的表格索引。 12 位表指数意味着一个有 4096 个值的表格, 这可能是实用的 。

将技术指数化为数组,而不是使用“如果”的语句,可以用来决定使用哪个指针。 我看到了一个图书馆,它安装了二进制树,而不是有两个名为指针(Pleft and pRight or whatever)的指针有长至2的指针阵列,并且使用“决定位”技术来决定要遵循哪个指针。例如,没有:

if (x < node->value)
    node = node->pLeft;
else
    node = node->pRight;

这个图书馆会做一些事情,比如:

i = (x < node->value);
node = node->link[i];

这是这个代码的链接: 红黑树,永远封存

其他回答

我刚读过这个问题及其答案,我觉得缺少答案。

消除我发现在管理下语言中特别出色的分支预测的一个常见方法是, 表格搜索而不是使用分支(虽然我还没有在本案中测试过它 ) 。

如果:

它是一个小桌子, 很可能被隐藏在处理器中, 而你运行的东西在一个非常紧凑的循环中, 和/或处理器可以预加载数据。

背景和原因

从处理器的角度来看,您的内存是慢的。为了弥补速度的差异,在您的处理器( L1/L2 缓存) 中嵌入了几个缓存。 想象一下, 您正在做你的好计算, 并发现您需要一个内存。 处理器会得到它的“ 装载” 操作, 并将内存部分装入缓存中, 然后用缓存来进行其余的计算。 因为内存相对缓慢, 此“ 装载” 将会减缓您的程序 。

像分支预测一样,这在Pentium处理器中得到了优化:处理器预测,它需要在操作实际击中缓存之前装入一个数据,并试图将数据装入缓存中。我们已经看到,分支预测有时会发生可怕的错误 -- -- 在最坏的情况下,你需要回去等待一个记忆负荷,这将需要永远的时间(换句话说:不完成分支预测是坏的,在分支预测失败之后的记忆负荷实在太可怕了!)

幸运的是,对于我们来说,如果记忆存取模式可以预测,处理器将装在快速缓存中,一切都很好。

我们首先需要知道的是小什么是小什么?虽然小一般比较好,但大拇指规则是坚持使用大小为 4096 字节的搜索表格。作为一个上限:如果您的查看表格大于 64K, 可能值得重新考虑 。

构建表格

因此我们发现我们可以创建一个小表格。 接下来要做的是设置一个查找功能。 查找功能通常是使用几个基本整数操作( 以及, 或者, xor, 转换, 转换, 添加, 删除, 或倍增) 的小型函数。 您想要将您的输入通过外观功能转换为表格中某种“ 独一无二的密钥 ” , 这样就可以简单给出您想要它做的所有工作的答案 。

在此情况下 : 128 表示我们可以保留这个值, < 128 表示我们摆脱它。 最简单的方法就是使用“ 和 ” : 如果我们保留它, 我们和它使用 7FFFFFFF; 如果我们想要摆脱它, 我们和它使用 0。 注意 128 也是一种2 的功率, 所以我们可以继续制作一个32768/128 整数的表格, 并填满它 1 0 和很多 7FFFFFFFFFFFF。

受管理语言

毕竟,管理下的语言会用分支来检查阵列的界限,以确保你不会搞砸...

嗯,不确切地说... : -)

在取消管理下语文的这一分支方面,已经做了相当多的工作。

for (int i = 0; i < array.Length; ++i)
{
   // Use array[i]
}

在此情况下, 编译者明显知道边界条件永远不会被击中 。 至少微软 JIT 编译者( 但我预计爪哇会做类似的事情) 将会注意到这一点并完全取消检查 。 WOW 表示没有分支 。 同样, 它也会处理其他明显的例子 。

如果您遇到管理下语言的查询问题 -- -- 关键是将 & 0x[ something] FFF 添加到您的外观功能上,使边界检查可以预测 -- -- 并观看其更快进行。

本案的结果

// Generate data
int arraySize = 32768;
int[] data = new int[arraySize];

Random random = new Random(0);
for (int c = 0; c < arraySize; ++c)
{
    data[c] = random.Next(256);
}

/*To keep the spirit of the code intact, I'll make a separate lookup table
(I assume we cannot modify 'data' or the number of loops)*/

int[] lookup = new int[256];

for (int c = 0; c < 256; ++c)
{
    lookup[c] = (c >= 128) ? c : 0;
}

// Test
DateTime startTime = System.DateTime.Now;
long sum = 0;

for (int i = 0; i < 100000; ++i)
{
    // Primary loop
    for (int j = 0; j < arraySize; ++j)
    {
        /* Here you basically want to use simple operations - so no
        random branches, but things like &, |, *, -, +, etc. are fine. */
        sum += lookup[data[j]];
    }
}

DateTime endTime = System.DateTime.Now;
Console.WriteLine(endTime - startTime);
Console.WriteLine("sum = " + sum);
Console.ReadLine();

在分类的情况下,你可以做的比依靠成功的分支预测或任何无分支比较的把戏:完全删除分支。

事实上,阵列被分割在一个毗连区,数据小于128,另一个数据小于128。 因此,你应该用二组搜索(使用 Lg(数组)=15 比较)找到分区点,然后从该点进行直线积累。

类似的东西( 未检查 )

int i= 0, j, k= arraySize;
while (i < k)
{
  j= (i + k) >> 1;
  if (data[j] >= 128)
    k= j;
  else
    i= j;
}
sum= 0;
for (; i < arraySize; i++)
  sum+= data[i];

或, 略微糊涂

int i, k, j= (i + k) >> 1;
for (i= 0, k= arraySize; i < k; (data[j] >= 128 ? k : i)= j)
  j= (i + k) >> 1;
for (sum= 0; i < arraySize; i++)
  sum+= data[i];

一种既快又快的方法,为分类或未分类两种方法提供了大致的解决办法,即:总和=3137536;(假设真正统一分布,预计价值为191.5的16384个样品:-)

如果您对这个代码可以做的更多优化感到好奇, 请考虑 :

以原始循环开始 :

for (unsigned i = 0; i < 100000; ++i)
{
    for (unsigned j = 0; j < arraySize; ++j)
    {
        if (data[j] >= 128)
            sum += data[j];
    }
}

通过循环互换,我们可以安全地将这一循环改为:

for (unsigned j = 0; j < arraySize; ++j)
{
    for (unsigned i = 0; i < 100000; ++i)
    {
        if (data[j] >= 128)
            sum += data[j];
    }
}

然后,你可以看到,如果条件是不变的 在整个执行 i 循环, 所以你可以拉起,如果:

for (unsigned j = 0; j < arraySize; ++j)
{
    if (data[j] >= 128)
    {
        for (unsigned i = 0; i < 100000; ++i)
        {
            sum += data[j];
        }
    }
}

然后,你看,内环会崩溃成一个单一的表达式, 假设浮点模型允许它(/ fp: fast 被丢弃, 例如)

for (unsigned j = 0; j < arraySize; ++j)
{
    if (data[j] >= 128)
    {
        sum += data[j] * 100000;
    }
}

这比以前快了十万倍

在对数据进行分类时,绩效大幅提高的原因是,如神秘论的回答所很好地解释的那样,分支预测罚款已经取消。

现在,如果我们看看代码

if (data[c] >= 128)
    sum += data[c];

如果... 其它... 分支是指在满足条件时添加某种内容。 这种分支可以很容易地转换成有条件的移动说明, 并汇编成有条件的移动指示: cmovl, 在 x86 系统中。 分支和可能的分支预测处罚将被删除 。

因此,在C中,C++C中,将直接(不作任何优化)汇编成x86中有条件移动指令的语句是永久操作员.? :.。 因此,我们将上述语句改写为同等语句:

sum += data[c] >=128 ? data[c] : 0;

在保持可读性的同时,我们可以检查加速系数。

在英特尔核心i7-2600K @3.4 GHz和视觉工作室2010释放模式上,基准是:

x86x86

Scenario Time (seconds)
Branching - Random data 8.885
Branching - Sorted data 1.528
Branchless - Random data 3.716
Branchless - Sorted data 3.71

x64 x64

Scenario Time (seconds)
Branching - Random data 11.302
Branching - Sorted data 1.830
Branchless - Random data 2.736
Branchless - Sorted data 2.737

结果在多个测试中是稳健的。 当分支结果无法预测时, 我们得到一个巨大的加速, 但是当它可以预测时, 我们遭受了一点点痛苦。 事实上, 当使用有条件的动作时, 无论数据模式如何, 性能都是一样的 。

现在让我们通过调查它们生成的 x86 组装来更仔细地看一看。 为了简单起见, 我们使用两个函数 最大 1 和 最大 2 。

最大 1 使用有条件分支, 如果... 其他... :

int max1(int a, int b) {
    if (a > b)
        return a;
    else
        return b;
}

最大值2 使用永久操作员... ... ?

int max2(int a, int b) {
    return a > b ? a : b;
}

在一台X86-64型机器上,海合会-S生成以下组装。

:max1
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    -8(%rbp), %eax
    jle     .L2
    movl    -4(%rbp), %eax
    movl    %eax, -12(%rbp)
    jmp     .L4
.L2:
    movl    -8(%rbp), %eax
    movl    %eax, -12(%rbp)
.L4:
    movl    -12(%rbp), %eax
    leave
    ret

:max2
    movl    %edi, -4(%rbp)
    movl    %esi, -8(%rbp)
    movl    -4(%rbp), %eax
    cmpl    %eax, -8(%rbp)
    cmovge  -8(%rbp), %eax
    leave
    ret

最大值2 使用代码要少得多, 原因是使用指令 cmovge 。 但真正的收益是 最大值2 不涉及分支跳跃, jmp , 如果预测结果不对, 则会有很大的性能处罚 。

那么,为什么有条件的行动效果更好呢?

在典型的 x86 处理器中,执行指令分为几个阶段。 大致上, 我们有不同的硬件可以处理不同阶段。 因此, 我们不必等待一个指令才能开始一个新的指令。 这被称为管道 。

在一个分支中,下列的训导是由前面的训导决定的,所以我们不得管线。我们不是等待的,就是预告的。

在有条件移动的情况下,有条件移动指令的执行分为几个阶段,但前几个阶段,如Fetch和Decode,并不取决于前一个指令的结果;只有后几个阶段需要结果。因此,我们等待一个指令的执行时间的一小部分。这就是为什么有条件移动版本在预测容易时比分支慢的原因。

《计算机系统:程序员的观点》一书第二版对此作了详细解释。您可以查看3.6.6节的有条件移动指示,整个第四章的处理结构,以及5.11.2节的预测和错误处罚处的特殊待遇。

有时,一些现代编译者可以以更好的性能优化我们的代码组装,有时有些编译者无法(有关代码是使用视觉工作室的本地编译者 ) 。 当无法预测的情况变得如此复杂,以至于编译者无法自动优化代码时,他们知道分支和有条件的动作之间的性能差异。

这个问题已经回答过很多次了。我还是想提醒大家注意另一个有趣的分析。

最近,这个例子(稍作修改)也被用来演示如何在 Windows 上显示一个代码在程序本身中被剖析。 顺便提一下, 作者还展示了如何使用结果来确定代码的大部分时间用于分解和未排序的案例中。 最后, 文章还展示了如何使用HAL( Hardware Empaction Develople) 的一个鲜为人知的特征来确定未分类案例中的分支错误发生多少。

连结就在这里:自我辩护示范