这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

当对数组进行排序时,数据在 0 至 255 之间分布,因此,约前半段的迭代将不输入 " 如果 " 报表(如果在下文中共享语句)。

if (data[c] >= 128)
    sum += data[c];

问题是: 是什么使上述语句在某些情况下无法执行, 如分类数据那样? 这里出现了“ 分支预测器 ” 。 分支预测器是一个数字电路, 试图猜出分支( 如当日电子结构 ) 将走哪条路, 然后再确定这一点。 分支预测器的目的是改善教学管道的流量 。 分支预测器在实现高效运行方面发挥着关键作用 !

让我们做一些板凳标记 来更好理解它

如果情况总是真实的,或者总是虚假的,处理器中的分支预测逻辑会抓住这个模式。 另一方面,如果情况无法预测,那么如果情况说明会更昂贵。

让我们用不同的条件来衡量这个循环的性能:

for (int i = 0; i < max; i++)
    if (condition)
        sum++;

以下是环绕时间与不同的真假模式 :

Condition                Pattern             Time (ms)
-------------------------------------------------------
(i & 0×80000000) == 0    T repeated          322

(i & 0xffffffff) == 0    F repeated          276

(i & 1) == 0             TF alternating      760

(i & 3) == 0             TFFFTFFF…           513

(i & 2) == 0             TTFFTTFF…           1675

(i & 4) == 0             TTTTFFFFTTTTFFFF…   1275

(i & 8) == 0             8T 8F 8T 8F …       752

(i & 16) == 0            16T 16F 16T 16F …   490

“坏”真实假象模式可以使虚报速度比“好”模式慢六倍! 当然,哪种模式是好的,哪一种模式不好,取决于汇编者产生的准确指示和具体的处理器。

因此,部门预测对业绩的影响是毫无疑问的!

其他回答

在同一行中(我认为没有任何答案强调这一点),最好提到有时(特别是在软件中,在软件中,性能很重要——如Linux内核),如果声明如下,你可以找到一些:

if (likely( everything_is_ok ))
{
    /* Do something */
}

或类似:

if (unlikely(very_improbable_condition))
{
    /* Do something */    
}

可能性 () 和 可能性 () 实际上都是宏, 其定义是使用海合会的 ` 内建_ 期望 ' 来帮助编译者插入预测代码, 以考虑到用户提供的信息, 从而有利于该条件。 海合会支持其他能够改变运行程序的行为或发布低级别指令, 如清除缓存等 。 请参见此文档, 内容可以通过海合会的现有内建 。

通常这种优化主要在硬实时应用程序或内嵌系统中找到,在这些系统中,执行时间很重要且至关重要。例如,如果您正在检查某些错误条件,而错误条件只发生1/10000 000次,那么为什么不通知编译者?这样,默认情况下,分支预测会假设该条件是假的。

分部门预测。

使用分类数组, 条件数据 [c] 128 首先对于一系列值来说是虚假的, 然后对所有后期值都变成真实的。 这很容易预测。 使用未排序数组, 您支付分支成本 。

我刚读过这个问题及其答案,我觉得缺少答案。

消除我发现在管理下语言中特别出色的分支预测的一个常见方法是, 表格搜索而不是使用分支(虽然我还没有在本案中测试过它 ) 。

如果:

它是一个小桌子, 很可能被隐藏在处理器中, 而你运行的东西在一个非常紧凑的循环中, 和/或处理器可以预加载数据。

背景和原因

从处理器的角度来看,您的内存是慢的。为了弥补速度的差异,在您的处理器( L1/L2 缓存) 中嵌入了几个缓存。 想象一下, 您正在做你的好计算, 并发现您需要一个内存。 处理器会得到它的“ 装载” 操作, 并将内存部分装入缓存中, 然后用缓存来进行其余的计算。 因为内存相对缓慢, 此“ 装载” 将会减缓您的程序 。

像分支预测一样,这在Pentium处理器中得到了优化:处理器预测,它需要在操作实际击中缓存之前装入一个数据,并试图将数据装入缓存中。我们已经看到,分支预测有时会发生可怕的错误 -- -- 在最坏的情况下,你需要回去等待一个记忆负荷,这将需要永远的时间(换句话说:不完成分支预测是坏的,在分支预测失败之后的记忆负荷实在太可怕了!)

幸运的是,对于我们来说,如果记忆存取模式可以预测,处理器将装在快速缓存中,一切都很好。

我们首先需要知道的是小什么是小什么?虽然小一般比较好,但大拇指规则是坚持使用大小为 4096 字节的搜索表格。作为一个上限:如果您的查看表格大于 64K, 可能值得重新考虑 。

构建表格

因此我们发现我们可以创建一个小表格。 接下来要做的是设置一个查找功能。 查找功能通常是使用几个基本整数操作( 以及, 或者, xor, 转换, 转换, 添加, 删除, 或倍增) 的小型函数。 您想要将您的输入通过外观功能转换为表格中某种“ 独一无二的密钥 ” , 这样就可以简单给出您想要它做的所有工作的答案 。

在此情况下 : 128 表示我们可以保留这个值, < 128 表示我们摆脱它。 最简单的方法就是使用“ 和 ” : 如果我们保留它, 我们和它使用 7FFFFFFF; 如果我们想要摆脱它, 我们和它使用 0。 注意 128 也是一种2 的功率, 所以我们可以继续制作一个32768/128 整数的表格, 并填满它 1 0 和很多 7FFFFFFFFFFFF。

受管理语言

毕竟,管理下的语言会用分支来检查阵列的界限,以确保你不会搞砸...

嗯,不确切地说... : -)

在取消管理下语文的这一分支方面,已经做了相当多的工作。

for (int i = 0; i < array.Length; ++i)
{
   // Use array[i]
}

在此情况下, 编译者明显知道边界条件永远不会被击中 。 至少微软 JIT 编译者( 但我预计爪哇会做类似的事情) 将会注意到这一点并完全取消检查 。 WOW 表示没有分支 。 同样, 它也会处理其他明显的例子 。

如果您遇到管理下语言的查询问题 -- -- 关键是将 & 0x[ something] FFF 添加到您的外观功能上,使边界检查可以预测 -- -- 并观看其更快进行。

本案的结果

// Generate data
int arraySize = 32768;
int[] data = new int[arraySize];

Random random = new Random(0);
for (int c = 0; c < arraySize; ++c)
{
    data[c] = random.Next(256);
}

/*To keep the spirit of the code intact, I'll make a separate lookup table
(I assume we cannot modify 'data' or the number of loops)*/

int[] lookup = new int[256];

for (int c = 0; c < 256; ++c)
{
    lookup[c] = (c >= 128) ? c : 0;
}

// Test
DateTime startTime = System.DateTime.Now;
long sum = 0;

for (int i = 0; i < 100000; ++i)
{
    // Primary loop
    for (int j = 0; j < arraySize; ++j)
    {
        /* Here you basically want to use simple operations - so no
        random branches, but things like &, |, *, -, +, etc. are fine. */
        sum += lookup[data[j]];
    }
}

DateTime endTime = System.DateTime.Now;
Console.WriteLine(endTime - startTime);
Console.WriteLine("sum = " + sum);
Console.ReadLine();

除了树枝预测可能会减慢你的速度之外 分解阵列还有另一个优势

您可以有一个停止状态, 而不是仅仅检查值, 这样您只能环绕相关数据, 忽略其它数据 。 分支预测只差一次 。

 // sort backwards (higher values first), may be in some other part of the code
 std::sort(data, data + arraySize, std::greater<int>());

 for (unsigned c = 0; c < arraySize; ++c) {
       if (data[c] < 128) {
              break;
       }
       sum += data[c];               
 }

在 ARM 中,不需要分支, 因为每个指令都有一个 4 位条件字段, 它( 零成本) 测试处理器状态登记册中可能出现的16种不同条件中的任何一种, 如果指令条件不实, 则跳过指令。 这就消除了对短分支的需求, 并且不会为此算法找到分支预测 。 因此, 此算法的分类版本会比ARM 上未分类版本的运行慢, 因为排序的间接成本增加 。

这个算法的内环在ARM组装语言中 看起来像是:

MOV R0, #0   // R0 = sum = 0
MOV R1, #0   // R1 = c = 0
ADR R2, data // R2 = addr of data array (put this instruction outside outer loop)
.inner_loop  // Inner loop branch label
    LDRB R3, [R2, R1]   // R3 = data[c]
    CMP R3, #128        // compare R3 to 128
    ADDGE R0, R0, R3    // if R3 >= 128, then sum += data[c] -- no branch needed!
    ADD R1, R1, #1      // c++
    CMP R1, #arraySize  // compare c to arraySize
    BLT inner_loop      // Branch to inner_loop if c < arraySize

但这其实是大局的一部分:

处理器状态登记册(PSR)中的状态位元总是更新 OP 代码, 因为这是它的目的, 但大多数其他指令都没有触动 PSR , 除非您在指令中添加一个可选的后缀, 并明确指出 PSR 应该根据指令的结果更新 。 就像 4 位条件后缀一样, 能够执行指令而不影响 PSR 是一种机制, 减少了对 ARM 上分支的需求, 并且也便利了硬件级的异常发送, 因为执行了 X 操作后, 您可以在随后( 或平行) 执行一系列其他工作, 明确不应该影响( 或受) 状态位元的影响 。 然后您可以测试 X 先前设定的状态位的状态状态 。

条件测试字段和可选的“ 设定状态位” 字段可以合并, 例如 :

ADDR R1、R2、R3在不更新任何状态位数的情况下执行R1 = R2 + R3。ADDGE R1、R2、R3仅在影响状态位数的先前指令导致大于或等于条件时才执行相同的操作。ADDDS R1、R2、R3在处理器状态登记册中进行添加并随后更新N、Z、C和V国旗,依据是结果是否为负、Ze、C(未签名添加)或oVerflowed(供签名添加)。ADDDDSGE R1、R2、R3仅在GE测试属实的情况下执行添加,然后根据添加结果更新状态位数。

大多数处理器结构没有这种能力来说明是否应该为特定操作更新状态位元,这可能需要写入额外的代码来保存和随后恢复状态位元,或者可能需要额外的分支,或者可能限制处理器的异常执行效率:大多数CPU指令设置的架构的副作用之一是,在大多数指令之后强制更新状态位元,是很难分离哪些指令可以平行运行而不相互干扰的。更新状态位元具有副作用,因此对代码具有线性效果。ARM在任何指令上混合和匹配无分支条件测试的能力,在任何指令非常强大之后,可以对组合语言程序员和编译员更新或不更新状态位,并生成非常高效的代码。

当您不需要分行时, 您可以避免冲刷管道的时间成本, 否则就是短的分支, 您也可以避免许多投机性蒸发形式的设计复杂性。 缓解最近发现的很多处理器弱点( 特例等)的最初天真效果影响 表明现代处理器的性能在多大程度上取决于复杂的投机性评估逻辑。 由于输油管很短,对分支的需求也大大减少, ARM不需要像 CISC 处理器那样依赖投机性评估。 ( 当然, 高端的ARM 实施过程包括投机性评估, 但是它只是绩效故事中的一小部分 ) 。

如果你曾经想过为什么ARM如此成功,那么这两种机制(加上另一个允许你“轮回”左转或右转的机制,任何算术操作员的两个论点之一或以零额外费用抵消内存存存取操作员的两种论点之一)的辉煌效力和互动作用是故事的一大部分,因为它们是ARM结构效率的最大来源。 1983年ARM ISA原设计师Steve Furber和Roger(现为Sophie)Wilson的聪明才智无论怎样强调都不为过。