这是C++代码的一块 显示一些非常特殊的行为

由于某种原因,对数据进行分类(在时间区之前)奇迹般地使主要循环速度快近六倍:

#include 
#include 
#include 

int main()
{
    // Generate data
    const unsigned arraySize = 32768;
    int data[arraySize];

    for (unsigned c = 0; c < arraySize; ++c)
        data[c] = std::rand() % 256;

    // !!! With this, the next loop runs faster.
    std::sort(data, data + arraySize);

    // Test
    clock_t start = clock();
    long long sum = 0;
    for (unsigned i = 0; i < 100000; ++i)
    {
        for (unsigned c = 0; c < arraySize; ++c)
        {   // Primary loop.
            if (data[c] >= 128)
                sum += data[c];
        }
    }

    double elapsedTime = static_cast(clock()-start) / CLOCKS_PER_SEC;

    std::cout << elapsedTime << '\n';
    std::cout << "sum = " << sum << '\n';
}

没有 std: sort( 数据, 数据+数组Size); 代码在 11. 54 秒内运行。 有了分类数据, 代码在 1. 93 秒内运行 。

(分类本身需要的时间比这个通过数组的时间要长, 所以如果我们需要计算未知数组, 它实际上不值得做 。)


起初,我以为这只是一种语言或编译器异常, 所以我尝试了爪哇:

import java.util.Arrays;
import java.util.Random;

public class Main
{
    public static void main(String[] args)
    {
        // Generate data
        int arraySize = 32768;
        int data[] = new int[arraySize];

        Random rnd = new Random(0);
        for (int c = 0; c < arraySize; ++c)
            data[c] = rnd.nextInt() % 256;

        // !!! With this, the next loop runs faster
        Arrays.sort(data);

        // Test
        long start = System.nanoTime();
        long sum = 0;
        for (int i = 0; i < 100000; ++i)
        {
            for (int c = 0; c < arraySize; ++c)
            {   // Primary loop.
                if (data[c] >= 128)
                    sum += data[c];
            }
        }

        System.out.println((System.nanoTime() - start) / 1000000000.0);
        System.out.println("sum = " + sum);
    }
}

其结果类似,但不太极端。


我的第一个想法是排序 将数据带入缓存, 但这是愚蠢的,因为数组 刚刚生成。

为什么处理一个分类阵列的速度要快于处理一个未分类阵列的速度?

守则正在总结一些独立的术语,因此命令不应重要。


与不同的/后来的汇编者和备选办法具有相同效果:

为什么处理一个未排列的阵列的速度与处理一个用现代 x86-64 叮当的排序阵列的速度相同? gcc 优化标记 -O3 使代码慢于 -O2


当前回答

当对数组进行排序时,数据在 0 至 255 之间分布,因此,约前半段的迭代将不输入 " 如果 " 报表(如果在下文中共享语句)。

if (data[c] >= 128)
    sum += data[c];

问题是: 是什么使上述语句在某些情况下无法执行, 如分类数据那样? 这里出现了“ 分支预测器 ” 。 分支预测器是一个数字电路, 试图猜出分支( 如当日电子结构 ) 将走哪条路, 然后再确定这一点。 分支预测器的目的是改善教学管道的流量 。 分支预测器在实现高效运行方面发挥着关键作用 !

让我们做一些板凳标记 来更好理解它

如果情况总是真实的,或者总是虚假的,处理器中的分支预测逻辑会抓住这个模式。 另一方面,如果情况无法预测,那么如果情况说明会更昂贵。

让我们用不同的条件来衡量这个循环的性能:

for (int i = 0; i < max; i++)
    if (condition)
        sum++;

以下是环绕时间与不同的真假模式 :

Condition                Pattern             Time (ms)
-------------------------------------------------------
(i & 0×80000000) == 0    T repeated          322

(i & 0xffffffff) == 0    F repeated          276

(i & 1) == 0             TF alternating      760

(i & 3) == 0             TFFFTFFF…           513

(i & 2) == 0             TTFFTTFF…           1675

(i & 4) == 0             TTTTFFFFTTTTFFFF…   1275

(i & 8) == 0             8T 8F 8T 8F …       752

(i & 16) == 0            16T 16F 16T 16F …   490

“坏”真实假象模式可以使虚报速度比“好”模式慢六倍! 当然,哪种模式是好的,哪一种模式不好,取决于汇编者产生的准确指示和具体的处理器。

因此,部门预测对业绩的影响是毫无疑问的!

其他回答

正如其他人已经提到的那样,神秘背后的是部门预测员。

我不是要补充一些东西,而是要用另一种方式解释这个概念。维基文字有一个简明的介绍,里面有文字和图表。我确实喜欢下面的解释,下面用一个图表来用直觉来描述处的预言。

在计算机结构中,分支预测器是一种数字电路,它试图猜测分支(如如果是当时的else结构)将以何种方式进行,然后才能确定这一点。分支预测器的目的是改善教学管道的流量。分支预测器在很多现代管道式微处理器结构(如x86)中实现高有效性能方面发挥着关键作用。双向分支通常是通过有条件的跳跃指令来实施。有条件跳跃可以是“不采取”的,也可以是有条件跳跃后立即实施的代码的第一个分支,或者可以是“获取”的,然后跳到存储第二分支的程序内存中的不同位置。在计算条件和有条件跳动通过指令管道的执行阶段之前,无法确定是否进行有条件跳动(见图1)。

根据所述情况,我写了动画演示,以显示在不同情况下如何在管道中执行指示。

没有部门预言家。

没有分支预测,处理器必须等到有条件跳跃指令通过执行阶段后,下一个指令才能进入管道的接货阶段。

该示例包含三个指令, 第一个是有条件跳跃指令。 后两个指令可以进入管道, 直到有条件跳跃指令执行为止 。

完成3项指示需要9小时周期。

使用预测器,不要采取有条件的跳跃。让我们假设预测不会采取有条件的跳跃。

完成3项指示需要7小时周期。

我们假设预测不会采取有条件的跳跃

完成3项指示需要9小时周期。

在分支误用的情况下,浪费的时间相当于从取货阶段到执行阶段的输油管阶段的数量。 现代微处理器往往有相当长的输油管,因此误用延迟时间在10到20小时之间。 结果,输油管更长时间增加了对更先进的分支预测器的需求。

如你所见,我们似乎没有理由不使用 部门预言家。

这是一个很简单的演示, 澄清了分支预测器的基本部分。 如果这些 gifs 令人烦恼, 请随意将其从答案中删除, 访问者也可以从 PredictorDemo 获得现场演示源代码 。

这个问题已经回答过很多次了。我还是想提醒大家注意另一个有趣的分析。

最近,这个例子(稍作修改)也被用来演示如何在 Windows 上显示一个代码在程序本身中被剖析。 顺便提一下, 作者还展示了如何使用结果来确定代码的大部分时间用于分解和未排序的案例中。 最后, 文章还展示了如何使用HAL( Hardware Empaction Develople) 的一个鲜为人知的特征来确定未分类案例中的分支错误发生多少。

连结就在这里:自我辩护示范

这是肯定的!

部门预测使得逻辑运行速度放慢, 因为代码中的转换会发生! 就像你走一条直街或一条街, 转得很多,

If the array is sorted, your condition is false at the first step: data[c] >= 128, then becomes a true value for the whole way to the end of the street. That's how you get to the end of the logic faster. On the other hand, using an unsorted array, you need a lot of turning and processing which make your code run slower for sure...

看看我在下面为你们创造的图象,哪条街会更快完工?

因此,在程序上,分支预测导致过程的慢化...

最后,很高兴知道 我们有两种分支预测 每个分支将对你的代码产生不同的影响:

1. 静态

2. 动态

微处理器在第一次遇到有条件分支时使用静态分支预测,在随后执行有条件分支代码时则使用动态分支预测。为了有效编写代码以利用这些规则,在撰写 if-else 或 开关 语句时,先检查最常见的情况,然后逐步工作到最不常见的情况。循环不一定要求固定分支预测使用任何特殊的代码顺序,因为通常只使用循环迭代器的条件。

分流收益!

重要的是要理解分支错误控制不会减慢程序。 错误预测的成本就好像不存在分支预测,而你等待着对表达方式的评价来决定运行的代码(下段有进一步的解释 ) 。

if (expression)
{
    // Run 1
} else {
    // Run 2
}

当出现 if-else \ 切换语句时, 表达式必须被评估以确定要执行哪个区块。 在编译者生成的组装代码中, 插入有条件的分支指令 。

分支指令可导致计算机开始执行不同的指令序列,从而偏离其默认的按顺序执行指令的行为(即如果表达式是虚假的,程序会跳过区块的代码),这取决于某些条件,即我们情况下的表达式评价。

尽管如此, 编译者试图预测结果, 然后再对结果进行实际评估。 它会从区块中获取指示, 如果表达方式是真实的, 那么就太好了! 我们得到了时间来评估它, 并在代码中取得了进步; 如果不是那样, 我们运行错误的代码, 管道就会被冲洗, 正确的区块会运行 。

可视化:

假设你需要选择路线1或路线2, 等待你的伴侣检查地图, 你已经停留在 ##,等待, 或者你可以选择路线1, 如果你运气好(路线1是正确的路线), 那么伟大的你不必等待你的伴侣检查地图(你省下时间让他检查地图), 否则你就会转回去。

尽管冲水管道的速度超快,但如今赌博是值得的。 预测分类数据或缓慢变化的数据总是比预测快速变化容易,也好于预测快速变化。

 O      Route 1  /-------------------------------
/|\             /
 |  ---------##/
/ \            \
                \
        Route 2  \--------------------------------

避免分支预测错误的一种方法是建立一个搜索表,并用数据来编制索引。 Stefan de Bruijn在答复中讨论了这一点。

但在此情况下,我们知道值在范围[0,255],我们只关心值 128。这意味着我们可以很容易地提取一小块来说明我们是否想要一个值:通过将数据移到右边的7位数,我们只剩下0位或1位数,我们只有1位数时才想要增加值。让我们把这个位数称为“决定位数 ” 。

将决定位数的 0/1 值作为索引输入一个阵列, 我们就可以生成一个代码, 无论数据是排序还是未排序, 都同样快速。 我们的代码总是会添加一个值, 但是当决定位数为 0 时, 我们将会添加一个值, 我们并不关心的地方 。 以下是代码 :

// Test
clock_t start = clock();
long long a[] = {0, 0};
long long sum;

for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        int j = (data[c] >> 7);
        a[j] += data[c];
    }
}

double elapsedTime = static_cast<double>(clock() - start) / CLOCKS_PER_SEC;
sum = a[1];

此代码浪费了一半的添加值, 但从未出现分支预测失败 。 随机数据比有实际的如果声明的版本要快得多 。

但在我的测试中,一个清晰的查看表比这个稍快一些, 可能是因为对查看表的索引比位移略快一点。 这显示了我的代码是如何设置和使用搜索表的( 在代码中“ 查看表” 中, 不可想象地称之为润滑 ) 。 以下是 C++ 代码 :

// Declare and then fill in the lookup table
int lut[256];
for (unsigned c = 0; c < 256; ++c)
    lut[c] = (c >= 128) ? c : 0;

// Use the lookup table after it is built
for (unsigned i = 0; i < 100000; ++i)
{
    // Primary loop
    for (unsigned c = 0; c < arraySize; ++c)
    {
        sum += lut[data[c]];
    }
}

在此情况下, 查看表只有256 字节, 所以它在一个缓存中非常适合, 并且非常快。 如果数据是 24 位值, 而我们只想要其中一半的话, 这个技术就不会有效... 搜索表会太大而不切实际。 另一方面, 我们可以将上面显示的两种技术结合起来: 首先将比特移开, 然后将一个查看表索引。 对于一个仅需要顶端半值的 24 位值, 我们可能会将数据右移12 位值, 并留下一个 12 位值的表格索引。 12 位表指数意味着一个有 4096 个值的表格, 这可能是实用的 。

将技术指数化为数组,而不是使用“如果”的语句,可以用来决定使用哪个指针。 我看到了一个图书馆,它安装了二进制树,而不是有两个名为指针(Pleft and pRight or whatever)的指针有长至2的指针阵列,并且使用“决定位”技术来决定要遵循哪个指针。例如,没有:

if (x < node->value)
    node = node->pLeft;
else
    node = node->pRight;

这个图书馆会做一些事情,比如:

i = (x < node->value);
node = node->link[i];

这是这个代码的链接: 红黑树,永远封存