如何在numpy数组中找到最近的值?例子:
np.find_nearest(array, value)
如何在numpy数组中找到最近的值?例子:
np.find_nearest(array, value)
当前回答
import numpy as np
def find_nearest(array, value):
array = np.array(array)
z=np.abs(array-value)
y= np.where(z == z.min())
m=np.array(y)
x=m[0,0]
y=m[1,0]
near_value=array[x,y]
return near_value
array =np.array([[60,200,30],[3,30,50],[20,1,-50],[20,-500,11]])
print(array)
value = 0
print(find_nearest(array, value))
其他回答
答案总结:如果有一个排序的数组,那么平分代码(如下所示)执行最快。大型数组快100-1000倍,小型数组快2-100倍。它也不需要numpy。 如果你有一个未排序的数组,那么如果数组很大,应该首先考虑使用O(n logn)排序,然后平分,如果数组很小,那么方法2似乎是最快的。
First you should clarify what you mean by nearest value. Often one wants the interval in an abscissa, e.g. array=[0,0.7,2.1], value=1.95, answer would be idx=1. This is the case that I suspect you need (otherwise the following can be modified very easily with a followup conditional statement once you find the interval). I will note that the optimal way to perform this is with bisection (which I will provide first - note it does not require numpy at all and is faster than using numpy functions because they perform redundant operations). Then I will provide a timing comparison against the others presented here by other users.
二等分的一半:
def bisection(array,value):
'''Given an ``array`` , and given a ``value`` , returns an index j such that ``value`` is between array[j]
and array[j+1]. ``array`` must be monotonic increasing. j=-1 or j=len(array) is returned
to indicate that ``value`` is out of range below and above respectively.'''
n = len(array)
if (value < array[0]):
return -1
elif (value > array[n-1]):
return n
jl = 0# Initialize lower
ju = n-1# and upper limits.
while (ju-jl > 1):# If we are not yet done,
jm=(ju+jl) >> 1# compute a midpoint with a bitshift
if (value >= array[jm]):
jl=jm# and replace either the lower limit
else:
ju=jm# or the upper limit, as appropriate.
# Repeat until the test condition is satisfied.
if (value == array[0]):# edge cases at bottom
return 0
elif (value == array[n-1]):# and top
return n-1
else:
return jl
现在我将从其他答案定义代码,它们都返回一个索引:
import math
import numpy as np
def find_nearest1(array,value):
idx,val = min(enumerate(array), key=lambda x: abs(x[1]-value))
return idx
def find_nearest2(array, values):
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
return indices
def find_nearest3(array, values):
values = np.atleast_1d(values)
indices = np.abs(np.int64(np.subtract.outer(array, values))).argmin(0)
out = array[indices]
return indices
def find_nearest4(array,value):
idx = (np.abs(array-value)).argmin()
return idx
def find_nearest5(array, value):
idx_sorted = np.argsort(array)
sorted_array = np.array(array[idx_sorted])
idx = np.searchsorted(sorted_array, value, side="left")
if idx >= len(array):
idx_nearest = idx_sorted[len(array)-1]
elif idx == 0:
idx_nearest = idx_sorted[0]
else:
if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]):
idx_nearest = idx_sorted[idx-1]
else:
idx_nearest = idx_sorted[idx]
return idx_nearest
def find_nearest6(array,value):
xi = np.argmin(np.abs(np.ceil(array[None].T - value)),axis=0)
return xi
现在我来计时代码: 注意方法1、2、4、5没有正确给出间隔。方法1、2、4四舍五入到数组中最近的点(例如>=1.5 -> 2),方法5总是四舍五入(例如1.45 -> 2)。只有方法3和6,当然还有对半给出了正确的间隔。
array = np.arange(100000)
val = array[50000]+0.55
print( bisection(array,val))
%timeit bisection(array,val)
print( find_nearest1(array,val))
%timeit find_nearest1(array,val)
print( find_nearest2(array,val))
%timeit find_nearest2(array,val)
print( find_nearest3(array,val))
%timeit find_nearest3(array,val)
print( find_nearest4(array,val))
%timeit find_nearest4(array,val)
print( find_nearest5(array,val))
%timeit find_nearest5(array,val)
print( find_nearest6(array,val))
%timeit find_nearest6(array,val)
(50000, 50000)
100000 loops, best of 3: 4.4 µs per loop
50001
1 loop, best of 3: 180 ms per loop
50001
1000 loops, best of 3: 267 µs per loop
[50000]
1000 loops, best of 3: 390 µs per loop
50001
1000 loops, best of 3: 259 µs per loop
50001
1000 loops, best of 3: 1.21 ms per loop
[50000]
1000 loops, best of 3: 746 µs per loop
对于一个大数组的对半分割是4us,而次之的是180us,最长的是1.21ms(快100 - 1000倍)。对于较小的数组,它要快2-100倍。
如果你的数组已经排序并且非常大,这是一个更快的解决方案:
def find_nearest(array,value):
idx = np.searchsorted(array, value, side="left")
if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])):
return array[idx-1]
else:
return array[idx]
这可以扩展到非常大的阵列。如果不能假定数组已经排序,可以很容易地修改上面的内容以在方法中排序。对于小型数组来说,这是多余的,但一旦它们变大,这就快得多了。
对于大型数组,@Demitri给出的(优秀)答案比目前标记为最佳的答案快得多。我从以下两个方面调整了他的精确算法:
不管输入数组是否排序,下面的函数都有效。 下面的函数返回与最接近的值对应的输入数组的索引,这有点更一般。
请注意,下面的函数还处理了一个特定的边缘情况,这将导致@Demitri编写的原始函数中的错误。否则,我的算法和他的一样。
def find_idx_nearest_val(array, value):
idx_sorted = np.argsort(array)
sorted_array = np.array(array[idx_sorted])
idx = np.searchsorted(sorted_array, value, side="left")
if idx >= len(array):
idx_nearest = idx_sorted[len(array)-1]
elif idx == 0:
idx_nearest = idx_sorted[0]
else:
if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]):
idx_nearest = idx_sorted[idx-1]
else:
idx_nearest = idx_sorted[idx]
return idx_nearest
import numpy as np
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
使用示例:
array = np.random.random(10)
print(array)
# [ 0.21069679 0.61290182 0.63425412 0.84635244 0.91599191 0.00213826
# 0.17104965 0.56874386 0.57319379 0.28719469]
print(find_nearest(array, value=0.5))
# 0.568743859261
这个函数使用numpy searchsorted处理任意数量的查询,因此在对输入数组进行排序之后,它的速度也一样快。 它可以在2d, 3d的规则网格上工作…:
#!/usr/bin/env python3
# keywords: nearest-neighbor regular-grid python numpy searchsorted Voronoi
import numpy as np
#...............................................................................
class Near_rgrid( object ):
""" nearest neighbors on a Manhattan aka regular grid
1d:
near = Near_rgrid( x: sorted 1d array )
nearix = near.query( q: 1d ) -> indices of the points x_i nearest each q_i
x[nearix[0]] is the nearest to q[0]
x[nearix[1]] is the nearest to q[1] ...
nearpoints = x[nearix] is near q
If A is an array of e.g. colors at x[0] x[1] ...,
A[nearix] are the values near q[0] q[1] ...
Query points < x[0] snap to x[0], similarly > x[-1].
2d: on a Manhattan aka regular grid,
streets running east-west at y_i, avenues north-south at x_j,
near = Near_rgrid( y, x: sorted 1d arrays, e.g. latitide longitude )
I, J = near.query( q: nq × 2 array, columns qy qx )
-> nq × 2 indices of the gridpoints y_i x_j nearest each query point
gridpoints = np.column_stack(( y[I], x[J] )) # e.g. street corners
diff = gridpoints - querypoints
distances = norm( diff, axis=1, ord= )
Values at an array A definded at the gridpoints y_i x_j nearest q: A[I,J]
3d: Near_rgrid( z, y, x: 1d axis arrays ) .query( q: nq × 3 array )
See Howitworks below, and the plot Voronoi-random-regular-grid.
"""
def __init__( self, *axes: "1d arrays" ):
axarrays = []
for ax in axes:
axarray = np.asarray( ax ).squeeze()
assert axarray.ndim == 1, "each axis should be 1d, not %s " % (
str( axarray.shape ))
axarrays += [axarray]
self.midpoints = [_midpoints( ax ) for ax in axarrays]
self.axes = axarrays
self.ndim = len(axes)
def query( self, queries: "nq × dim points" ) -> "nq × dim indices":
""" -> the indices of the nearest points in the grid """
queries = np.asarray( queries ).squeeze() # or list x y z ?
if self.ndim == 1:
assert queries.ndim <= 1, queries.shape
return np.searchsorted( self.midpoints[0], queries ) # scalar, 0d ?
queries = np.atleast_2d( queries )
assert queries.shape[1] == self.ndim, [
queries.shape, self.ndim]
return [np.searchsorted( mid, q ) # parallel: k axes, k processors
for mid, q in zip( self.midpoints, queries.T )]
def snaptogrid( self, queries: "nq × dim points" ):
""" -> the nearest points in the grid, 2d [[y_j x_i] ...] """
ix = self.query( queries )
if self.ndim == 1:
return self.axes[0][ix]
else:
axix = [ax[j] for ax, j in zip( self.axes, ix )]
return np.array( axix )
def _midpoints( points: "array-like 1d, *must be sorted*" ) -> "1d":
points = np.asarray( points ).squeeze()
assert points.ndim == 1, points.shape
diffs = np.diff( points )
assert np.nanmin( diffs ) > 0, "the input array must be sorted, not %s " % (
points.round( 2 ))
return (points[:-1] + points[1:]) / 2 # floats
#...............................................................................
Howitworks = \
"""
How Near_rgrid works in 1d:
Consider the midpoints halfway between fenceposts | | |
The interval [left midpoint .. | .. right midpoint] is what's nearest each post --
| | | | points
| . | . | . | midpoints
^^^^^^ . nearest points[1]
^^^^^^^^^^^^^^^ nearest points[2] etc.
2d:
I, J = Near_rgrid( y, x ).query( q )
I = nearest in `x`
J = nearest in `y` independently / in parallel.
The points nearest [yi xj] in a regular grid (its Voronoi cell)
form a rectangle [left mid x .. right mid x] × [left mid y .. right mid y]
(in any norm ?)
See the plot Voronoi-random-regular-grid.
Notes
-----
If a query point is exactly halfway between two data points,
e.g. on a grid of ints, the lines (x + 1/2) U (y + 1/2),
which "nearest" you get is implementation-dependent, unpredictable.
"""
Murky = \
""" NaNs in points, in queries ?
"""
__version__ = "2021-10-25 oct denis-bz-py"