如何在numpy数组中找到最近的值?例子:

np.find_nearest(array, value)

当前回答

所有的答案都有助于收集信息来编写高效的代码。但是,我已经编写了一个小的Python脚本来针对各种情况进行优化。如果提供的数组已排序,则将是最佳情况。如果搜索一个指定值的最近点的索引,那么对半模块是最省时的。当一个索引对应一个数组时,numpy searchsorted是最有效的。

import numpy as np
import bisect
xarr = np.random.rand(int(1e7))

srt_ind = xarr.argsort()
xar = xarr.copy()[srt_ind]
xlist = xar.tolist()
bisect.bisect_left(xlist, 0.3)

In[63]: %时间平分。bisect_left (xlist, 0.3) CPU次数:user 0ns, sys: 0ns, total: 0ns 壁时间:22.2µs

np.searchsorted(xar, 0.3, side="left")

In [64]: %time np。Searchsorted (xar, 0.3, side="left") CPU次数:user 0ns, sys: 0ns, total: 0ns 壁时间:98.9µs

randpts = np.random.rand(1000)
np.searchsorted(xar, randpts, side="left")

%的时间np。Searchsorted (xar, randpts, side="left") CPU次数:用户4ms, sys: 0ns, total: 4ms 壁时间:1.2 ms

如果我们遵循乘法规则,那么numpy应该花费~100 ms,这意味着快了~83倍。

其他回答

import numpy as np
def find_nearest(array, value):
    array = np.asarray(array)
    idx = (np.abs(array - value)).argmin()
    return array[idx]

使用示例:

array = np.random.random(10)
print(array)
# [ 0.21069679  0.61290182  0.63425412  0.84635244  0.91599191  0.00213826
#   0.17104965  0.56874386  0.57319379  0.28719469]

print(find_nearest(array, value=0.5))
# 0.568743859261

如果你的数组已经排序并且非常大,这是一个更快的解决方案:

def find_nearest(array,value):
    idx = np.searchsorted(array, value, side="left")
    if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])):
        return array[idx-1]
    else:
        return array[idx]

这可以扩展到非常大的阵列。如果不能假定数组已经排序,可以很容易地修改上面的内容以在方法中排序。对于小型数组来说,这是多余的,但一旦它们变大,这就快得多了。

下面是@Ari Onasafari的scipy版本,回答“在向量数组中找到最近的向量”

In [1]: from scipy import spatial

In [2]: import numpy as np

In [3]: A = np.random.random((10,2))*100

In [4]: A
Out[4]:
array([[ 68.83402637,  38.07632221],
       [ 76.84704074,  24.9395109 ],
       [ 16.26715795,  98.52763827],
       [ 70.99411985,  67.31740151],
       [ 71.72452181,  24.13516764],
       [ 17.22707611,  20.65425362],
       [ 43.85122458,  21.50624882],
       [ 76.71987125,  44.95031274],
       [ 63.77341073,  78.87417774],
       [  8.45828909,  30.18426696]])

In [5]: pt = [6, 30]  # <-- the point to find

In [6]: A[spatial.KDTree(A).query(pt)[1]] # <-- the nearest point 
Out[6]: array([  8.45828909,  30.18426696])

#how it works!
In [7]: distance,index = spatial.KDTree(A).query(pt)

In [8]: distance # <-- The distances to the nearest neighbors
Out[8]: 2.4651855048258393

In [9]: index # <-- The locations of the neighbors
Out[9]: 9

#then 
In [10]: A[index]
Out[10]: array([  8.45828909,  30.18426696])

如果你不想使用numpy,可以这样做:

def find_nearest(array, value):
    n = [abs(i-value) for i in array]
    idx = n.index(min(n))
    return array[idx]

答案总结:如果有一个排序的数组,那么平分代码(如下所示)执行最快。大型数组快100-1000倍,小型数组快2-100倍。它也不需要numpy。 如果你有一个未排序的数组,那么如果数组很大,应该首先考虑使用O(n logn)排序,然后平分,如果数组很小,那么方法2似乎是最快的。

First you should clarify what you mean by nearest value. Often one wants the interval in an abscissa, e.g. array=[0,0.7,2.1], value=1.95, answer would be idx=1. This is the case that I suspect you need (otherwise the following can be modified very easily with a followup conditional statement once you find the interval). I will note that the optimal way to perform this is with bisection (which I will provide first - note it does not require numpy at all and is faster than using numpy functions because they perform redundant operations). Then I will provide a timing comparison against the others presented here by other users.

二等分的一半:

def bisection(array,value):
    '''Given an ``array`` , and given a ``value`` , returns an index j such that ``value`` is between array[j]
    and array[j+1]. ``array`` must be monotonic increasing. j=-1 or j=len(array) is returned
    to indicate that ``value`` is out of range below and above respectively.'''
    n = len(array)
    if (value < array[0]):
        return -1
    elif (value > array[n-1]):
        return n
    jl = 0# Initialize lower
    ju = n-1# and upper limits.
    while (ju-jl > 1):# If we are not yet done,
        jm=(ju+jl) >> 1# compute a midpoint with a bitshift
        if (value >= array[jm]):
            jl=jm# and replace either the lower limit
        else:
            ju=jm# or the upper limit, as appropriate.
        # Repeat until the test condition is satisfied.
    if (value == array[0]):# edge cases at bottom
        return 0
    elif (value == array[n-1]):# and top
        return n-1
    else:
        return jl

现在我将从其他答案定义代码,它们都返回一个索引:

import math
import numpy as np

def find_nearest1(array,value):
    idx,val = min(enumerate(array), key=lambda x: abs(x[1]-value))
    return idx

def find_nearest2(array, values):
    indices = np.abs(np.subtract.outer(array, values)).argmin(0)
    return indices

def find_nearest3(array, values):
    values = np.atleast_1d(values)
    indices = np.abs(np.int64(np.subtract.outer(array, values))).argmin(0)
    out = array[indices]
    return indices

def find_nearest4(array,value):
    idx = (np.abs(array-value)).argmin()
    return idx


def find_nearest5(array, value):
    idx_sorted = np.argsort(array)
    sorted_array = np.array(array[idx_sorted])
    idx = np.searchsorted(sorted_array, value, side="left")
    if idx >= len(array):
        idx_nearest = idx_sorted[len(array)-1]
    elif idx == 0:
        idx_nearest = idx_sorted[0]
    else:
        if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]):
            idx_nearest = idx_sorted[idx-1]
        else:
            idx_nearest = idx_sorted[idx]
    return idx_nearest

def find_nearest6(array,value):
    xi = np.argmin(np.abs(np.ceil(array[None].T - value)),axis=0)
    return xi

现在我来计时代码: 注意方法1、2、4、5没有正确给出间隔。方法1、2、4四舍五入到数组中最近的点(例如>=1.5 -> 2),方法5总是四舍五入(例如1.45 -> 2)。只有方法3和6,当然还有对半给出了正确的间隔。

array = np.arange(100000)
val = array[50000]+0.55
print( bisection(array,val))
%timeit bisection(array,val)
print( find_nearest1(array,val))
%timeit find_nearest1(array,val)
print( find_nearest2(array,val))
%timeit find_nearest2(array,val)
print( find_nearest3(array,val))
%timeit find_nearest3(array,val)
print( find_nearest4(array,val))
%timeit find_nearest4(array,val)
print( find_nearest5(array,val))
%timeit find_nearest5(array,val)
print( find_nearest6(array,val))
%timeit find_nearest6(array,val)

(50000, 50000)
100000 loops, best of 3: 4.4 µs per loop
50001
1 loop, best of 3: 180 ms per loop
50001
1000 loops, best of 3: 267 µs per loop
[50000]
1000 loops, best of 3: 390 µs per loop
50001
1000 loops, best of 3: 259 µs per loop
50001
1000 loops, best of 3: 1.21 ms per loop
[50000]
1000 loops, best of 3: 746 µs per loop

对于一个大数组的对半分割是4us,而次之的是180us,最长的是1.21ms(快100 - 1000倍)。对于较小的数组,它要快2-100倍。