如何在numpy数组中找到最近的值?例子:
np.find_nearest(array, value)
如何在numpy数组中找到最近的值?例子:
np.find_nearest(array, value)
当前回答
也许对ndarray有帮助:
def find_nearest(X, value):
return X[np.unravel_index(np.argmin(np.abs(X - value)), X.shape)]
其他回答
我认为最python的方式是:
num = 65 # Input number
array = np.random.random((10))*100 # Given array
nearest_idx = np.where(abs(array-num)==abs(array-num).min())[0] # If you want the index of the element of array (array) nearest to the the given number (num)
nearest_val = array[abs(array-num)==abs(array-num).min()] # If you directly want the element of array (array) nearest to the given number (num)
这是基本代码。你可以把它作为一个函数来使用
如果你不想使用numpy,可以这样做:
def find_nearest(array, value):
n = [abs(i-value) for i in array]
idx = n.index(min(n))
return array[idx]
下面是一个处理非标量“values”数组的版本:
import numpy as np
def find_nearest(array, values):
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
return array[indices]
如果输入是标量,则返回数字类型(例如int, float)的版本:
def find_nearest(array, values):
values = np.atleast_1d(values)
indices = np.abs(np.subtract.outer(array, values)).argmin(0)
out = array[indices]
return out if len(out) > 1 else out[0]
对于大型数组,@Demitri给出的(优秀)答案比目前标记为最佳的答案快得多。我从以下两个方面调整了他的精确算法:
不管输入数组是否排序,下面的函数都有效。 下面的函数返回与最接近的值对应的输入数组的索引,这有点更一般。
请注意,下面的函数还处理了一个特定的边缘情况,这将导致@Demitri编写的原始函数中的错误。否则,我的算法和他的一样。
def find_idx_nearest_val(array, value):
idx_sorted = np.argsort(array)
sorted_array = np.array(array[idx_sorted])
idx = np.searchsorted(sorted_array, value, side="left")
if idx >= len(array):
idx_nearest = idx_sorted[len(array)-1]
elif idx == 0:
idx_nearest = idx_sorted[0]
else:
if abs(value - sorted_array[idx-1]) < abs(value - sorted_array[idx]):
idx_nearest = idx_sorted[idx-1]
else:
idx_nearest = idx_sorted[idx]
return idx_nearest
如果你的数组已经排序并且非常大,这是一个更快的解决方案:
def find_nearest(array,value):
idx = np.searchsorted(array, value, side="left")
if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])):
return array[idx-1]
else:
return array[idx]
这可以扩展到非常大的阵列。如果不能假定数组已经排序,可以很容易地修改上面的内容以在方法中排序。对于小型数组来说,这是多余的,但一旦它们变大,这就快得多了。