如何在numpy数组中找到最近的值?例子:

np.find_nearest(array, value)

当前回答

如果你的数组已经排序并且非常大,这是一个更快的解决方案:

def find_nearest(array,value):
    idx = np.searchsorted(array, value, side="left")
    if idx > 0 and (idx == len(array) or math.fabs(value - array[idx-1]) < math.fabs(value - array[idx])):
        return array[idx-1]
    else:
        return array[idx]

这可以扩展到非常大的阵列。如果不能假定数组已经排序,可以很容易地修改上面的内容以在方法中排序。对于小型数组来说,这是多余的,但一旦它们变大,这就快得多了。

其他回答

下面是一个使用2D数组的版本,如果用户拥有scipy的cdist函数,则使用它,如果用户没有,则使用更简单的距离计算。

默认情况下,输出是最接近输入值的索引,但您可以使用output关键字将其更改为'index', 'value'或'both'之一,其中'value'输出数组[index], 'both'输出索引,数组[index]。

对于非常大的数组,您可能需要使用kind='euclidean',因为默认的scipy cdist函数可能会耗尽内存。

这可能不是绝对最快的解决方案,但已经很接近了。

def find_nearest_2d(array, value, kind='cdist', output='index'):
    # 'array' must be a 2D array
    # 'value' must be a 1D array with 2 elements
    # 'kind' defines what method to use to calculate the distances. Can choose one
    #    of 'cdist' (default) or 'euclidean'. Choose 'euclidean' for very large
    #    arrays. Otherwise, cdist is much faster.
    # 'output' defines what the output should be. Can be 'index' (default) to return
    #    the index of the array that is closest to the value, 'value' to return the
    #    value that is closest, or 'both' to return index,value
    import numpy as np
    if kind == 'cdist':
        try: from scipy.spatial.distance import cdist
        except ImportError:
            print("Warning (find_nearest_2d): Could not import cdist. Reverting to simpler distance calculation")
            kind = 'euclidean'
    index = np.where(array == value)[0] # Make sure the value isn't in the array
    if index.size == 0:
        if kind == 'cdist': index = np.argmin(cdist([value],array)[0])
        elif kind == 'euclidean': index = np.argmin(np.sum((np.array(array)-np.array(value))**2.,axis=1))
        else: raise ValueError("Keyword 'kind' must be one of 'cdist' or 'euclidean'")
    if output == 'index': return index
    elif output == 'value': return array[index]
    elif output == 'both': return index,array[index]
    else: raise ValueError("Keyword 'output' must be one of 'index', 'value', or 'both'")

稍微修改一下,上面的答案适用于任意维度的数组(1d, 2d, 3d,…):

def find_nearest(a, a0):
    "Element in nd array `a` closest to the scalar value `a0`"
    idx = np.abs(a - a0).argmin()
    return a.flat[idx]

或者,写成一行:

a.flat[np.abs(a - a0).argmin()]

也许对ndarray有帮助:

def find_nearest(X, value):
    return X[np.unravel_index(np.argmin(np.abs(X - value)), X.shape)]
import numpy as np
def find_nearest(array, value):
    array = np.array(array)
    z=np.abs(array-value)
    y= np.where(z == z.min())
    m=np.array(y)
    x=m[0,0]
    y=m[1,0]
    near_value=array[x,y]

    return near_value

array =np.array([[60,200,30],[3,30,50],[20,1,-50],[20,-500,11]])
print(array)
value = 0
print(find_nearest(array, value))

我认为最python的方式是:

 num = 65 # Input number
 array = np.random.random((10))*100 # Given array 
 nearest_idx = np.where(abs(array-num)==abs(array-num).min())[0] # If you want the index of the element of array (array) nearest to the the given number (num)
 nearest_val = array[abs(array-num)==abs(array-num).min()] # If you directly want the element of array (array) nearest to the given number (num)

这是基本代码。你可以把它作为一个函数来使用