我来自熊猫的背景,我习惯了从CSV文件读取数据到一个dataframe,然后简单地改变列名使用简单的命令有用的东西:
df.columns = new_column_name_list
然而,这在使用sqlContext创建的PySpark数据框架中是行不通的。
我能想到的唯一解决办法是:
df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', inferschema='true', delimiter='\t').load("data.txt")
oldSchema = df.schema
for i,k in enumerate(oldSchema.fields):
k.name = new_column_name_list[i]
df = sqlContext.read.format("com.databricks.spark.csv").options(header='false', delimiter='\t').load("data.txt", schema=oldSchema)
这基本上是定义变量两次,首先推断模式,然后重命名列名,然后用更新的模式再次加载数据框架。
有没有更好更有效的方法来做到这一点,就像我们对熊猫做的那样?
我的Spark版本是1.5.0
最接近df的表述。Columns = new_column_name_list为:
import pyspark.sql.functions as F
df = df.select(*[F.col(name_old).alias(name_new)
for (name_old, name_new)
in zip(df.columns, new_column_name_list)]
这并不需要任何很少使用的函数,并强调了一些在Spark中非常有用的模式。如果你发现这一行代码做了太多的事情,你也可以拆分这些步骤:
import pyspark.sql.functions as F
column_mapping = [F.col(name_old).alias(name_new)
for (name_old, name_new)
in zip(df.columns, new_column_name_list)]
df = df.select(*column_mapping)
有很多方法可以做到这一点:
Option 1. Using selectExpr.
data = sqlContext.createDataFrame([("Alberto", 2), ("Dakota", 2)],
["Name", "askdaosdka"])
data.show()
data.printSchema()
# Output
#+-------+----------+
#| Name|askdaosdka|
#+-------+----------+
#|Alberto| 2|
#| Dakota| 2|
#+-------+----------+
#root
# |-- Name: string (nullable = true)
# |-- askdaosdka: long (nullable = true)
df = data.selectExpr("Name as name", "askdaosdka as age")
df.show()
df.printSchema()
# Output
#+-------+---+
#| name|age|
#+-------+---+
#|Alberto| 2|
#| Dakota| 2|
#+-------+---+
#root
# |-- name: string (nullable = true)
# |-- age: long (nullable = true)
Option 2. Using withColumnRenamed, notice that this method allows you to "overwrite" the same column. For Python3, replace xrange with range.
from functools import reduce
oldColumns = data.schema.names
newColumns = ["name", "age"]
df = reduce(lambda data, idx: data.withColumnRenamed(oldColumns[idx], newColumns[idx]), xrange(len(oldColumns)), data)
df.printSchema()
df.show()
Option 3. using
alias, in Scala you can also use as.
from pyspark.sql.functions import col
data = data.select(col("Name").alias("name"), col("askdaosdka").alias("age"))
data.show()
# Output
#+-------+---+
#| name|age|
#+-------+---+
#|Alberto| 2|
#| Dakota| 2|
#+-------+---+
Option 4. Using sqlContext.sql, which lets you use SQL queries on DataFrames registered as tables.
sqlContext.registerDataFrameAsTable(data, "myTable")
df2 = sqlContext.sql("SELECT Name AS name, askdaosdka as age from myTable")
df2.show()
# Output
#+-------+---+
#| name|age|
#+-------+---+
#|Alberto| 2|
#| Dakota| 2|
#+-------+---+